Indexed by:
Abstract:
The indirect anthraquinone method is currently used to produce H2O2, but it leads to high energy consumption and a large amount of chemical waste. Alternatively, water oxidation reactions offer a potential green approach for H2O2 production, although it is constrained by low selectivity. Herein, the functional photoanodes are rationally designed for H2O2 production via photocatalytic water oxidation. Specifically, P/Mo co-doped BiVO4 films are achieved on a conductive glass to serve as the photocatalytic layer, which is coated with an ultrathin amorphous TiO2 film to achieve good stability. Importantly, metal-free P-doped polymeric carbon nitride dots are deposited on the photoanode, acting as the reaction centres. This innovative approach moves away from the traditional reliance on inorganic materials as co-catalysts in order to suppress the thermodynamically favoured O-2 evolution, which, in turn, significantly enhances the selectivity, efficiency and stability of H2O2 production. Consequently, an optimal selectivity of approximate to 64% for H2O2 production is achieved at an applied voltage bias of 1.7 V versus RHE in a 1.0 m KHCO3 solution, achieving a yield of approximate to 34.2 mu mol hr(-1) cm(-2). This research offers a novel strategy for developing photocatalytic films with optimised co-catalysts for a photoanode in photocatalytic H2O2 synthesis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SMALL
ISSN: 1613-6810
Year: 2025
1 3 . 0 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: