Indexed by:
Abstract:
Heavy metal contamination in water threatens human health and ecological security, necessitating efficient and sustainable remediation technologies. Adsorption is a widely used method due to its cost-effectiveness, high selectivity, and ease of operation. Among various adsorbents, conjugated microporous polymers (CMPs) have shown great potential for heavy metal removal, benefiting from their π-conjugated structures, high surface area, tunable pore sizes, and strong metal ion interactions. However, challenges remain in synthesis and material properties. Extensive postsynthetic modifications may introduce structural complexity and compromise adsorption performance, while excessive functionalization can lead to pore blockage, reducing available adsorption sites. Additionally, inadequate distribution or low grafting density of chelating groups may weaken metal ion binding. Further challenges include enhancing selectivity, developing eco-friendly regeneration methods, improving stability in complex environments, and achieving large-scale production. Addressing these issues requires optimizing synthetic strategies, precisely incorporating functional groups, and improving pore structure control. This review summarizes recent advances in CMP-based heavy metal adsorption, discusses adsorption mechanisms and structural optimization, and identifies future research directions to advance their practical application in water purification. © 2025 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Macromolecular Chemistry and Physics
ISSN: 1022-1352
Year: 2025
2 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: