• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lan, S. (Lan, S..) [1] | Wang, J. (Wang, J..) [2] | Yao, L. (Yao, L..) [3] | Ding, X. (Ding, X..) [4]

Indexed by:

Scopus

Abstract:

During the pulsed discharge process in water, the impedance characteristics of the plasma channel can be influenced by adjusting electrical parameters, electrode spacing, pressure levels, and other factors. Understanding how to adjust the impedance value of the discharge circuit is crucial for achieving a more stable and efficient discharge process, which holds significant engineering significance. In order to investigate the variation trends of impedance characteristics of the plasma channel under different discharge conditions, this study independently developed a needle-needle electrode high-voltage discharge system in water. This study measured relevant electrical parameters such as voltage and current of the plasma channel, and using circuit formulas and the particle swarm optimization (PSO) algorithm, the impedance variations of these five cycles under different discharge conditions were investigated. Circuit formulas and the PSO algorithm were usedto investigate the impedance variations of these five cycles under different discharge conditions. The results indicate that, under the experimental conditions of this study, the impedance values across the five cycles exhibit an increasing trend. When the voltage amplitude increases, the resistance of the plasma channel shows a decreasing trend; when the pressure level increases, the resistance of the plasma channel shows an increasing trend; and when the electrode gap increases, the resistance of the plasma channel also exhibits an increasing trend. Additionally, this study simulated the corresponding oscillating waveform based on the plasma impedance values and voltage formulas. By comparing the fitting degree between the actual waveform and simulated waveform, the calculated impedance characteristics obtained in this study were, furthermore, validated as reasonable. © 1973-2012 IEEE.

Keyword:

Impedance characteristics plasma PSO pulsed discharge in water

Community:

  • [ 1 ] [Lan S.]Fuzhou University, School of Electrical Engineering and Automation, Fuzhou, 350108, China
  • [ 2 ] [Wang J.]Fuzhou University, School of Electrical Engineering and Automation, Fuzhou, 350108, China
  • [ 3 ] [Yao L.]Fuzhou University, School of Electrical Engineering and Automation, Fuzhou, 350108, China
  • [ 4 ] [Ding X.]Fuzhou University, School of Electrical Engineering and Automation, Fuzhou, 350108, China
  • [ 5 ] [Wang J.]Fuzhou University, School of Electrical Engineering and Automation, Fuzhou, 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

IEEE Transactions on Plasma Science

ISSN: 0093-3813

Year: 2025

Issue: 4

Volume: 53

Page: 770-779

1 . 3 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:115/10037745
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1