Indexed by:
Abstract:
To accurately calculate the charging demand of electric vehicles (EVs), a dynamic charging demand model of EVs on highway is proposed, which considers the interaction between stations. On this basis, a charging station layout planning model is constructed to minimize the investment cost of charging facilities and the waiting time of users in the queue, with the number of charging stations and piles, the distance between stations, and the charging demand of users as constraints. To solve the model quickly, this paper establishes a set of candidate sites under the shortest path and then linearizes the distance constraint between charging stations from nonlinear to integer linear programming. Moreover, the non-dominated sorting multi-objective genetic algorithm Ⅱ (NSGA-Ⅱ) and evidence reasoning are adopted to solve the proposed models. Finally, the proposed model is simulated and verified in the actual travel data of the Fujian section of the 31-node Shenhai Expressway. © 2025 Science Press. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Acta Energiae Solaris Sinica
ISSN: 0254-0096
Year: 2025
Issue: 4
Volume: 46
Page: 11-21
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: