Indexed by:
Abstract:
Energy materials are essential for addressing global energy challenges, and their design, recycling, and performance optimization are critical for sustainable development. To efficiently rise to this occasion, advanced technology should be explored to address these challenges. This review focuses on the potential of ultrafast thermal engineering as an innovative approach to the design and recycling of energy materials and systematically examines ultrahigh temperature shock’s origins, mechanisms, and developmental progress, clarifying fundamental differences between the Joule heating and carbothermal shock modes. Recent advancements in lithium/sodium battery electrode fabrication, catalyst synthesis, and battery recycling by this technology are comprehensively summarized to highlight the processing parameters, structural modulation mechanisms, and underlying principles. The review also explores the mechanisms of ultrahigh temperature shock processes, their scalability, and their environmental and economic implications. Notably, a mechanistic insight into the dynamic coexistence of Joule heating and carbothermal shock in UTS is proposed, which may synergistically govern structural evolution in poor conductivity/insulating materials. This review ultimately aims to drive the development and application of ultrafast thermal engineering in the energy materials field. © 2025 American Chemical Society.
Keyword:
Reprint 's Address:
Source :
ACS Nano
ISSN: 1936-0851
Year: 2025
Issue: 18
Volume: 19
Page: 17199-17227
1 5 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: