Indexed by:
Abstract:
This study aimed to clone the novel α-glucosidase gene Aga432 from Paenibacillus sp. and enhance its catalytic activity through site-directed mutagenesis. A gene fragment encoding α-glucosidase was successfully amplified from the genomic DNA of Paenibacillus sp., comprehensive sequence analysis was performed, and homology modeling and molecular docking were employed to construct gene-engineered strains. Eight positive mutant strains were identified, among which the enzymatic properties of recombinant Aga432 and the highest relative activity mutant AT-2 were characterized. Additionally, the dispersing effects of recombinant α-glucosidases Aga432 and AT-2 on biofilms were explored, and their toxicity to mouse embryo fibroblasts was evaluated. The results revealed that the specific activity of Aga432 was 45.05 U/mg, while the mutant AT-2 exhibited a significantly enhanced specific activity of 84.09 U/mg. Although the optimal reaction temperature and pH for AT-2 were essentially unaltered relative to Aga432, its thermal stability was significantly enhanced, and it exhibited heightened stability under acidic conditions. The Km of mutant AT-2 was 2.18 times that of Aga432, the Vmax was 3.19 times, the Kcat was 2.33 times, and the Kcat/Km was 1.07 times that of Aga432. In vitro cellular assays indicated that Aga432 and AT-2 at concentrations of 15.0~30.0 μg/mL were non-toxic and exhibited good cell compatibility. Biofilm dispersal assays demonstrated that both recombinant α-glucosidases at concentrations ranging from 10.0 to 50.0 μg/mL significantly dispersed bacterial biofilms (P © The Author(s) 2025.
Keyword:
Reprint 's Address:
Email:
Source :
Science and Technology of Food Industry
ISSN: 1002-0306
Year: 2025
Issue: 11
Volume: 46
Page: 185-193
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: