Abstract:
为更好解决基于同步定位与地图构建(SLAM)地图无人车的长期定位问题,提出一种基于语义图相似匹配与候选帧的语义扫描上下文描述符,通过粗、细两步定位实现对点云场景的重定位。首先,提取点云语义和几何特征,剔除移动、可移动类对象,通过融合语义信息和拓扑关系构建语义图,以图相似度计算实现快速重定位粗匹配;其次,通过全局语义迭代最近点(ICP)方法计算点云之间的相对偏航角和水平位移,为点云配准提供良好的初始值;最后,通过语义扫描上下文生成全局语义描述符,通过对比描述符判别点云相似性,完成精准重定位。实验结果表明:所提方法相较基于语义图的地点识别方法在地点识别精度、遮挡场景和视角变化场景下精度分别提升20.10%、20.90%和20.47%。
Keyword:
Reprint 's Address:
Email:
Source :
激光与光电子学进展
Year: 2024
Issue: 18
Volume: 61
Page: 199-206
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: