Indexed by:
Abstract:
To address the challenges of optimizing cable-stayed bridges under seismic loading, a multi-objective particle swarm optimization (PSO) procedure to optimize load-bearing components of cable-stayed bridges is presented. The procedure integrates numerical computing software MATLAB with finite element analysis software ANSYS. The final goal is to identify the optimal cross-sectional dimensions of towers and girders, as well as the optimal cross-sectional areas of cables and their corresponding pre-tension forces. The goal is achieved by coupling the PSO for global searching, time history analysis or spectrum analysis for dynamic evaluation, and the influence matrix method for determining the cable pre-tension forces. The effectiveness of proposed procedure is validated through a two dimensional (2D) and a three dimensional (3D) symmetric layout bridge. Following that, the design procedure is utilized in the preliminary design of a single tower bridge without backstays located in Pescara, Italy. The results demonstrate that the proposed optimization procedure could be an useful tool to optimize cable-stay bridges under seismic loading. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Keyword:
Reprint 's Address:
Email:
Source :
Bulletin of Earthquake Engineering
ISSN: 1570-761X
Year: 2025
3 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: