Abstract:
准确的茶园分布信息可以为土地利用规划、种植布局优化提供科学的决策支撑,有助于推动茶产业可持续发展。本文基于GF-2 PMS影像的RGB波段,Sentinel-2光学影像计算的NDVI,Sentinel-1时序SAR数据构建的物候特征(包括茶树生长幅度(Growth amplitude, GA)和生长期长度(Growth length, GL)),以及GF-7立体像对影像计算的坡向、坡度、曲率,构建了茶园多模态遥感特征,并通过随机森林特征优选出最佳组合。利用双分支网络联合学习策略,以AMLNet(Attentional multiscale lightweight encoder-decoder network)为第1分支,Vanilla AMLNet为第2分支,构建耦合多模态信息的双分支网络模型MIPBNet(Multi-modal information parallel branch network);利用特征融合模块(Dual-branch feature fusion block, DBFF)在解码器末端进行特征级融合;利用复合损失函数进行优化训练。研究结果表明:NDVI+GA+坡向+坡度组合最能提高茶园分类精度。基于RGB数据依次加入NDVI、GA、坡向、坡度的组合方案,实验结果表明,融合多模态特征后,茶园提取结果漏提和误提现象明显减少,总体精度提升3.11个百分点。与典型的语义分割模型UNet、UNeXt、Segformer相比,MIPBNet的单分支AMLNet获得了更优的茶园提取结果。
Keyword:
Reprint 's Address:
Email:
Source :
农业机械学报
Year: 2025
Issue: 06
Volume: 56
Page: 446-456
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: