Indexed by:
Abstract:
This study investigates a modified Lotka-Volterra commensalism system that incorporates the weak Allee effect in prey and symmetric (equal harvesting effort for both species) non-selective harvesting, addressing a critical gap in ecological modeling. Unlike previous work, we rigorously examine how the interaction between the Allee effect and harvesting disrupts system stability, giving rise to novel bifurcation phenomena and population collapse thresholds. Using eigenvalue analysis and the Dulac-Bendixson criterion, we derive sufficient conditions for the existence and stability of equilibria. We find that harvesting destabilizes the system by inducing two saddle-node bifurcations. Notably, prey abundance can increase with greater Allee intensity under controlled harvesting-a rare and counterintuitive ecological outcome. Moreover, exceeding a critical harvesting threshold drives both species to extinction, while controlled harvesting allows sustainable coexistence. Numerical simulations support these analytical findings and identify critical parameter ranges for species coexistence. These results contribute to theoretical ecology and offer insights for designing sustainable harvesting strategies that balance exploitation with conservation.
Keyword:
Reprint 's Address:
Version:
Source :
SYMMETRY-BASEL
Year: 2025
Issue: 6
Volume: 17
2 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3