Abstract:
无人机遥感探测在军事侦察领域发挥着重要作用,偏振探测利用偏振光与物体相互作用产生的偏振变化来提高目标对比度。然而在复杂场景下,伪装小目标与背景特征差异较小且空间信息不足,存在检测困难的问题。为此提出一种偏振伪装小目标检测算法(Polarization Camouflaged Small Object Detection-YOLO,PCSOD-YOLO),设计了高效层注意力模块-坐标注意力特征提取模块和空间金字塔池化跨阶段局部通道-3D权重注意力感受野模块,捕获目标的偏振特征和语义信息,增强上下文信息理解能力;设计了动态小目标检测头,通过动态卷积增强对小目标特征提取能力的同时,利用不同尺度的特征信息,联合多通道特征信息输出小目标检测结果。构建伪装小目标偏振图像数据集(Polarization Image of Camouflaged Small Objects,PICSO)。在PICSO数据集上的实验表明,所提出的方法可以有效检测伪装小目标,mAP
Keyword:
Reprint 's Address:
Email:
Source :
兵工学报
Year: 2025
Issue: 07
Volume: 46
Page: 339-350
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: