Indexed by:
Abstract:
The coastal developments in the Middle East put low priority on tsunami risk assessment due to the rare occurrence and absence of genuine tsunami track records on the coastline in the past. Tsunami-vulnerable coasts, including the east coast of the UAE, need to prepare for, and pay attention to, the impact of future tsunamis due to increased earthquake activity in the region. This study investigated the tsunami characteristics of the nearshore from hypothetical tsunami conditions by applications of numerical modeling and Artificial Neural Network (ANN) methods. The modeling results showed that the maximum tsunami depth at the shore was highest in Khor Fakkan and Mirbih for the given tsunami boundary conditions, while the tsunami withdrawal was greater on the southern bathymetry compared to that on the northern bathymetry when the tsunami period increased. ANN results confirmed that the still sea depth and seabed slope were more important than the tsunami period when predicting the maximum tsunami depth at the shore. © 2025 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Sustainability (Switzerland)
ISSN: 2071-1050
Year: 2025
Issue: 15
Volume: 17
2 . 5 9 2
JCR@2018
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: