Indexed by:
Abstract:
Although numerous models have been proposed to predict the intensity of human activities in urban areas, two major issues hamper the performance of existing models: (1) fail to incorporate appropriate prior knowledge instrumental for improving accuracy and interpretability; (2) fail to integrate probabilistic and deterministic predictions to achieve complementary strengths, namely uncertainty quantification and high predictive accuracy. To address these challenges, we proposed a prior-enhanced dual-mode spatiotemporal graph neural network (PED-STGNN) to support both probabilistic and deterministic predictions. Specifically, we introduced a hypergraph node-to-vector (hypernode2vec) method to capture the multivariate functional similarity prior derived from complex and multivariate relations between urban regions. This functional similarity characterizes urban systems more precisely than existing methods relying on first-order pairwise relations. It improves accuracy and interpretability while enabling spatial modeling of higher-order multivariate relations beyond first-order pairwise relations. We also designed a plug-and-play probabilistic prediction module that enables switches between probabilistic and deterministic modes. Experiments based on the human activity intensity in Fuzhou, China, demonstrated the advantages in accuracy, interpretability and multi-scenario applicability.
Keyword:
Reprint 's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
ISSN: 1365-8816
Year: 2025
4 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: