Indexed by:
Abstract:
Current research on electricity-gas–integrated energy systems (EG-IESs) often overlooks power quality issues prevalent in power systems. Voltage sags, critical and frequent power quality disturbance, significantly affect the EG-IES due to sensitive coupling devices. To minimize economic losses from voltage sags in the EG-IES, this study introduces an optimal configuration methodology for EG-IES coupling devices, considering fault propagation within both electrical and gas subsystems. Initially, the impact of voltage sags on the bidirectional interaction of the EG-IES is analyzed, with a focus on the influence of coupling devices. Subsequently, tolerance characteristic curves for compressors and gas turbines are presented, and a system economic loss model, based on the tolerance curves of coupling devices, is developed. An objective function is then formulated to minimize economic losses, incorporating a coupling device cost model, and solved using an enhanced particle swarm optimization algorithm to determine the optimal configuration of coupling devices. The efficacy and applicability of the proposed method are validated using an EG-IES model comprising the IEEE 14-bus system and an 11-node gas network. The results indicate that the proposed optimal configuration method for EG-IES coupling devices, implemented during the planning phase, effectively reduces losses caused by voltage sags in the EG-IES while accounting for equipment installation costs. Copyright © 2025 Wei Zhao et al. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd.
Keyword:
Reprint 's Address:
Email:
Source :
International Transactions on Electrical Energy Systems
Year: 2025
Issue: 1
Volume: 2025
1 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: