• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:刘庆珍

Refining:

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 6 >
油纸绝缘扩展德拜等效模型时域微分法峰值特性分析
期刊论文 | 2025 , 44 (1) , 128-134 | 电气应用
Abstract&Keyword Cite

Abstract :

针对变压器油纸绝缘扩展德拜模型时域微分法存在的峰值覆盖现象,导致无法准确判断模型弛豫支路数,首先推导出去极化电流函数的n次微分形式,并通过两条微分子谱线研究微分法峰值覆盖因素;然后计算前一条微分谱线在后一条微分谱线峰值点的比例,作为微分子谱线一对微分子谱线二峰值点影响程度,同理计算谱线二对谱线一峰值点影响程度;接着研究弛豫贡献度与微分次数对微分谱线峰值覆盖的影响;最后通过仿真验证了弛豫贡献度越大,其子谱线峰值点越明显,相邻两个子谱线峰值点越容易被其覆盖,微分次数越高,各微分子谱线峰值点越明显.研究结果论证了峰值覆盖现象存在的原因,为后续有效降低峰值覆盖现象、准确可靠地判断变压器油纸绝缘扩展德拜弛豫支路数提供理论基础.

Keyword :

去极化电流 去极化电流 变压器 变压器 峰值点覆盖 峰值点覆盖 扩展德拜模型 扩展德拜模型 时域微分法 时域微分法 油纸绝缘 油纸绝缘

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 汪洋洋 , 宋福根 , 刘庆珍 . 油纸绝缘扩展德拜等效模型时域微分法峰值特性分析 [J]. | 电气应用 , 2025 , 44 (1) : 128-134 .
MLA 汪洋洋 等. "油纸绝缘扩展德拜等效模型时域微分法峰值特性分析" . | 电气应用 44 . 1 (2025) : 128-134 .
APA 汪洋洋 , 宋福根 , 刘庆珍 . 油纸绝缘扩展德拜等效模型时域微分法峰值特性分析 . | 电气应用 , 2025 , 44 (1) , 128-134 .
Export to NoteExpress RIS BibTex

Version :

基于拉曼光谱技术的变压器绝缘油老化研究
期刊论文 | 2025 , 26 (06) , 8-16,28 | 电气技术
Abstract&Keyword Cite

Abstract :

针对变压器绝缘油的实测拉曼光谱数据,以拉曼光谱技术为手段,以准确判别变压器绝缘老化状态为目的,开展基于拉曼光谱数据处理、特征提取和老化诊断的研究。首先,结合拉曼光谱噪声的变化规律,基于小波变换理论提出全局阈值小波变换滤波法,有效地去除拉曼光谱中的噪声信号。然后,基于自适应迭代重加权惩罚最小二乘法(airPLS)提出一种改进的基线校正方法,准确地去除拉曼光谱的荧光背景。其次,运用连续投影算法(SPA)提取拉曼光谱中的老化特征信息,并分析其与变压器绝缘油老化程度之间的关系。最后,基于轻量级梯度提升机(LightGBM)分类模型实现对变压器绝缘老化状态的准确判别,并以极限梯度提升(XGBoost)模型作为对照,比较二者的诊断精度。实验结果表明,轻量级梯度提升机模型的诊断精度具有明显优势,验证了所提取老化特征信息的有效性。

Keyword :

变压器绝缘油 变压器绝缘油 噪声 噪声 拉曼光谱 拉曼光谱 特征提取 特征提取 老化判别 老化判别 荧光背景 荧光背景

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 周宇含 , 刘庆珍 . 基于拉曼光谱技术的变压器绝缘油老化研究 [J]. | 电气技术 , 2025 , 26 (06) : 8-16,28 .
MLA 周宇含 等. "基于拉曼光谱技术的变压器绝缘油老化研究" . | 电气技术 26 . 06 (2025) : 8-16,28 .
APA 周宇含 , 刘庆珍 . 基于拉曼光谱技术的变压器绝缘油老化研究 . | 电气技术 , 2025 , 26 (06) , 8-16,28 .
Export to NoteExpress RIS BibTex

Version :

Compounding voltage weakness indicator and reactive power optimization strategy oriented to it EI CSCD PKU
期刊论文 | 2024 , 44 (1) , 147-152 and 159 | Electric Power Automation Equipment
Abstract&Keyword Cite

Abstract :

A new weak link determination indicator of power system is proposed and a multi-objective function reactive power optimization method oriented to system weak link analysis is proposed. The characteristics and advantages of both voltage and power aspects of the weakness indicator are fused. A new weak link compounding margin determination indicator is defined,which comprehensively describes the distance between the load normal operating point and the voltage collapse point. This indicator can be used as the determination criterion to identify the voltage weak link point set of system,which constitutes the set of nodes to be compensated for reactive power optimization. A multi-objective reactive power optimization model is established,and an improved adaptive genetic algorithm is used to replace the traditional roulette wheel method with deterministic selection principle in the algorithm selection process,and then the multi-objective reactive power optimization model is solved. Taking the IEEE 30-bus system and the New England IEEE 39-bus system as simulative testing cases,by comparing several system operation indicators and the calculative results of traditional method,the efficiency and superiority of reactive power optimization strategy according to the new weak link determination indicator is verified,as well as the high efficiency of the improved adaptive genetic algorithm in the multi-objective reactive power optimization calculation is verified. © 2024 Electric Power Automation Equipment Press. All rights reserved.

Keyword :

Efficiency Efficiency Electric loads Electric loads Genetic algorithms Genetic algorithms Multiobjective optimization Multiobjective optimization Reactive power Reactive power Well testing Well testing

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Qingzhen , Huang, Junying , Wang, Shaofang . Compounding voltage weakness indicator and reactive power optimization strategy oriented to it [J]. | Electric Power Automation Equipment , 2024 , 44 (1) : 147-152 and 159 .
MLA Liu, Qingzhen 等. "Compounding voltage weakness indicator and reactive power optimization strategy oriented to it" . | Electric Power Automation Equipment 44 . 1 (2024) : 147-152 and 159 .
APA Liu, Qingzhen , Huang, Junying , Wang, Shaofang . Compounding voltage weakness indicator and reactive power optimization strategy oriented to it . | Electric Power Automation Equipment , 2024 , 44 (1) , 147-152 and 159 .
Export to NoteExpress RIS BibTex

Version :

Transformer oil insulation aging based on Raman spectral data processing and peak identification EI CSCD PKU
期刊论文 | 2024 , 52 (8) , 158-166 | Power System Protection and Control
Abstract&Keyword Cite

Abstract :

There are problems in that the Raman analysis of transformer oil is usually interfered with by noise and fluorescent background, and it is difficult to identify the position of the spectral peak. Thus this paper proposes an improved data processing and spectral peak recognition algorithm for the Raman analysis of transformer oil aging evaluation. An adaptive Savitzky-Golay filtering method is proposed, and adaptive window-size Raman spectral data is introduced for denoising. An improved polynomial fitting algorithm is used to remove the fluorescence background processing of the de-noised data to reduce its influence on the fitting results. Each data point is weighted according to the distance between the data point and the expected Raman signal, so as to achieve more accurate de-fluorescence background processing. The aging degree of transformer oil is identified by spectral peak recognition technology, and the spectral peak is identified by the Gaussian window discrimination method with two scales, and the authenticity of the suspected Raman spectral peak is judged by the local weighted signal-to-noise ratio (LW_SNR). Finally, the effectiveness of the proposed algorithm in transformer oil aging evaluation is proved by experiment. © 2024 Power System Protection and Control Press. All rights reserved.

Keyword :

Data handling Data handling Fluorescence Fluorescence Oil filled transformers Oil filled transformers Raman spectroscopy Raman spectroscopy Signal denoising Signal denoising Signal to noise ratio Signal to noise ratio Transformer protection Transformer protection

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Qingzhen , Zhang, Yi , Yan, Renwu . Transformer oil insulation aging based on Raman spectral data processing and peak identification [J]. | Power System Protection and Control , 2024 , 52 (8) : 158-166 .
MLA Liu, Qingzhen 等. "Transformer oil insulation aging based on Raman spectral data processing and peak identification" . | Power System Protection and Control 52 . 8 (2024) : 158-166 .
APA Liu, Qingzhen , Zhang, Yi , Yan, Renwu . Transformer oil insulation aging based on Raman spectral data processing and peak identification . | Power System Protection and Control , 2024 , 52 (8) , 158-166 .
Export to NoteExpress RIS BibTex

Version :

基于改进雪融优化算法的油纸绝缘扩展德拜模型参数辨识
期刊论文 | 2024 , 37 (9) , 80-87 | 广东电力
Abstract&Keyword Cite

Abstract :

基于回复电压法求解变压器油纸绝缘扩展德拜模型等效电路参数,是典型的非线性多目标优化问题.为了提高扩展德拜模型参数辨识的效率和准确度,提出一种新颖的改进雪融优化(improved snow ablation optimizer,ISAO)算法,旨在有效解决扩展德拜模型参数辨识问题.ISAO算法融合了多种改进策略,运用Tent混沌映射和折射镜像学习机制提高搜索效率,引入莱维飞行策略和贪婪策略增强优化性能,并提出参数预设机制,进一步简化辨识流程、提高求解效率.将ISAO算法应用于油纸绝缘扩展德拜等效电路参数的优化求解,并与几种常用的智能优化算法进行对比,结果表明该算法在扩展德拜模型参数辨识问题上具有显著优势.

Keyword :

参数辨识 参数辨识 参数预设机制 参数预设机制 回复电压法 回复电压法 扩展德拜模型 扩展德拜模型 油纸绝缘 油纸绝缘 非线性多目标优化 非线性多目标优化

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 周宇含 , 刘庆珍 . 基于改进雪融优化算法的油纸绝缘扩展德拜模型参数辨识 [J]. | 广东电力 , 2024 , 37 (9) : 80-87 .
MLA 周宇含 等. "基于改进雪融优化算法的油纸绝缘扩展德拜模型参数辨识" . | 广东电力 37 . 9 (2024) : 80-87 .
APA 周宇含 , 刘庆珍 . 基于改进雪融优化算法的油纸绝缘扩展德拜模型参数辨识 . | 广东电力 , 2024 , 37 (9) , 80-87 .
Export to NoteExpress RIS BibTex

Version :

基于多策略融合粒子群算法的油纸绝缘参数辨识
期刊论文 | 2024 , 25 (9) , 14-21 | 电气技术
Abstract&Keyword Cite

Abstract :

针对粒子群优化算法收敛速度较慢、易陷入局部最优、收敛结果不够稳定等问题,本文从初始种群、边界处理、惯性权重三个方面对传统粒子群算法进行改进,提出多策略融合粒子群算法(MSF-PSO),并通过测试函数证明了MSF-PSO可大幅提高计算速度和计算效率.将MSF-PSO应用于变压器油纸绝缘介电响应的德拜等效电路参数辨识中,计算结果表明,与其他粒子群优化算法相比,该算法获得的回复电压极化谱能更好地与现场测试获得的回复电压极化谱相吻合,进一步验证了本文所提改进算法的准确性,可为诊断变压器油纸绝缘设备老化情况提供参考.

Keyword :

参数辨识 参数辨识 回复电压 回复电压 回复电压极化谱 回复电压极化谱 油纸绝缘 油纸绝缘 粒子群优化 粒子群优化

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 徐晨展 , 刘庆珍 . 基于多策略融合粒子群算法的油纸绝缘参数辨识 [J]. | 电气技术 , 2024 , 25 (9) : 14-21 .
MLA 徐晨展 等. "基于多策略融合粒子群算法的油纸绝缘参数辨识" . | 电气技术 25 . 9 (2024) : 14-21 .
APA 徐晨展 , 刘庆珍 . 基于多策略融合粒子群算法的油纸绝缘参数辨识 . | 电气技术 , 2024 , 25 (9) , 14-21 .
Export to NoteExpress RIS BibTex

Version :

Characteristic Optimization Based on Combined Statistical Indicators and Random Forest Theory SCIE
期刊论文 | 2024 , 10 (6) , 2657-2666 | CSEE JOURNAL OF POWER AND ENERGY SYSTEMS
Abstract&Keyword Cite

Abstract :

In order to effectively utilize the dielectric response characteristics of transformers to diagnose the insulation state, this paper proposes a two-level hybrid optimization method for analyzing time-domain dielectric response characteristics. The optimization algorithm is based on the combined statistical indicators (CSI) and random forest (RF) theory. The initial feature space set is formed with 23 time-domain characteristics. In the first-level stage, statistical indices correlation, distance, and information indicators are integrated to assess the synthesis score of the characteristics, while highly redundant and low-class discrimination characteristics are eliminated from the initial space set. In the second-level stage, the Random Forest based outside bagging data theory is introduced to evaluate the least important characteristics, and the characteristics with low importance indices are excluded to obtain the final optimal feature space set. The proposed method is carried out on 82 sets of data from actual dielectric response tests on oil-paper insulation transformers. Finally, the final optimal feature space set, along with several other data sets, is tested via different diagnosis methods. The results show that the optimal feature space set obtained via the proposed method outperforms other feature space sets in terms of better adaptability and diagnosis accuracy.

Keyword :

Aging Aging Correlation Correlation Decision trees Decision trees Feature space optimization Feature space optimization integrated statistical indicators integrated statistical indicators Oil insulation Oil insulation oil-paper insulation state oil-paper insulation state Optimization methods Optimization methods Power transformer insulation Power transformer insulation random forest random forest Time-domain analysis Time-domain analysis time domain characteristic time domain characteristic two-level algorithm two-level algorithm

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Qingzhen , Cai, Chao , Wu, Lei et al. Characteristic Optimization Based on Combined Statistical Indicators and Random Forest Theory [J]. | CSEE JOURNAL OF POWER AND ENERGY SYSTEMS , 2024 , 10 (6) : 2657-2666 .
MLA Liu, Qingzhen et al. "Characteristic Optimization Based on Combined Statistical Indicators and Random Forest Theory" . | CSEE JOURNAL OF POWER AND ENERGY SYSTEMS 10 . 6 (2024) : 2657-2666 .
APA Liu, Qingzhen , Cai, Chao , Wu, Lei , Yan, Renwu . Characteristic Optimization Based on Combined Statistical Indicators and Random Forest Theory . | CSEE JOURNAL OF POWER AND ENERGY SYSTEMS , 2024 , 10 (6) , 2657-2666 .
Export to NoteExpress RIS BibTex

Version :

基于等级云模型的油纸绝缘老化状态评估 CSCD PKU
期刊论文 | 2023 , 59 (1) , 176-184 | 高压电器
Abstract&Keyword Cite

Abstract :

针对油纸绝缘介电响应法中单一特征量老化评估不准确等问题,提出运用等级云模型进行多特征量的油纸绝缘老化状态评估.首先,运用矩阵束算法对等效电路进行参数辨识,提出两个能分别表征几何支路和极化支路老化状态的新时域特征量;然后,结合主、客观两种不同赋权方法进行综合权重的计算;最后,使用等级云模型来构建设备老化状态的评估模型:根据云模型理论和实测数据得到各标准等级云模型的数字特征,将待评估设备的各项指标与标准等级云模型进行关联度计算,从而得到设备的绝缘老化等级.经若干实例验证,该方法得到的评估结果能正确反映设备的真实情况,具备较高的应用可行性.

Keyword :

介电响应法 介电响应法 油纸绝缘 油纸绝缘 矩阵束算法 矩阵束算法 等级云模型 等级云模型 老化状态评估 老化状态评估

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 刘庆珍 , 陈俊鸿 . 基于等级云模型的油纸绝缘老化状态评估 [J]. | 高压电器 , 2023 , 59 (1) : 176-184 .
MLA 刘庆珍 et al. "基于等级云模型的油纸绝缘老化状态评估" . | 高压电器 59 . 1 (2023) : 176-184 .
APA 刘庆珍 , 陈俊鸿 . 基于等级云模型的油纸绝缘老化状态评估 . | 高压电器 , 2023 , 59 (1) , 176-184 .
Export to NoteExpress RIS BibTex

Version :

Optimization of dielectric response characteristics of oil paper insulation based onFCBF feature selection and the XGBoost principle EI CSCD PKU
期刊论文 | 2022 , 50 (15) , 50-59 | Power System Protection and Control
Abstract&Keyword Cite

Abstract :

There are problems of large average error and low classification accuracy in feature space extraction of transformer oil-paper insulation comprehensive diagnosis. These problems are due to the existence of correlation and redundant features in high-dimensional feature space. Thus a feature quantity optimization strategy based on a fast filtering correlation algorithm and limit gradient rise is proposed. First, from the measured data of transformer dielectric response, various kinds of time-domain dielectric characteristics are extracted to form the initial high-dimensional feature space. Secondly, a two-stage time-domain feature selection method is proposed. In the first stage, a fast correlation filtering algorithm is used to eliminate the features with low correlation and high redundancy, and in the second stage the importance of features is evaluated according to the limit gradient, so as to determine the optimal feature space. Finally, different control groups are set for comparative demonstration of the optimal feature space. This effectively verifies the rationality and accuracy of the optimal feature space obtained by adopting the optimal strategy proposed above. © 2022 Power System Protection and Control Press. All rights reserved.

Keyword :

Computer aided diagnosis Computer aided diagnosis Feature Selection Feature Selection Oil filled transformers Oil filled transformers Paper Paper Time domain analysis Time domain analysis

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Qingzhen , Huang, Changshuo . Optimization of dielectric response characteristics of oil paper insulation based onFCBF feature selection and the XGBoost principle [J]. | Power System Protection and Control , 2022 , 50 (15) : 50-59 .
MLA Liu, Qingzhen et al. "Optimization of dielectric response characteristics of oil paper insulation based onFCBF feature selection and the XGBoost principle" . | Power System Protection and Control 50 . 15 (2022) : 50-59 .
APA Liu, Qingzhen , Huang, Changshuo . Optimization of dielectric response characteristics of oil paper insulation based onFCBF feature selection and the XGBoost principle . | Power System Protection and Control , 2022 , 50 (15) , 50-59 .
Export to NoteExpress RIS BibTex

Version :

基于多模型综合特征选择和LSTM-Attention的短期负荷预测
期刊论文 | 2022 , 7 (6) , 11-20 | 分布式能源
Abstract&Keyword Cite

Abstract :

为提高电力系统短期负荷预测精度和预测效率,提出一种基于多模型综合特征选择和长短期记忆单元(long short time memory,LSTM)-Attention的短期负荷预测方法.首先,利用随机森林算法、自适应集成(adaptive boosting,AdaBoost)算法及梯度提升树(gradient boosting decision tree,GBDT)算法对原始数据进行初步拟合预测,提取3种算法拟合后的结果来获取特征量与负荷大小的相关系数,从而建立综合相关系数.接着,根据综合相关系数的大小,剔除相关系数较小的特征量,将剩余的特征量与历史负荷大小数据结合构成新的数据集.最后,将新的数据集作为LSTM-Attention预测模型的输入,从而得到待预测日的负荷预测曲线.通过分析所提出的预测方法在某地区负荷数据集的预测结果可知,该方法优于其他预测方法.

Keyword :

LSTM-Attention LSTM-Attention 多模型 多模型 特征选择 特征选择 相关系数 相关系数 短期负荷预测 短期负荷预测

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 彭泽森 , 刘庆珍 , 张溢 . 基于多模型综合特征选择和LSTM-Attention的短期负荷预测 [J]. | 分布式能源 , 2022 , 7 (6) : 11-20 .
MLA 彭泽森 et al. "基于多模型综合特征选择和LSTM-Attention的短期负荷预测" . | 分布式能源 7 . 6 (2022) : 11-20 .
APA 彭泽森 , 刘庆珍 , 张溢 . 基于多模型综合特征选择和LSTM-Attention的短期负荷预测 . | 分布式能源 , 2022 , 7 (6) , 11-20 .
Export to NoteExpress RIS BibTex

Version :

10| 20| 50 per page
< Page ,Total 6 >

Export

Results:

Selected

to

Format:
Online/Total:647/10841317
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1