Query:
学者姓名:钟景洋
Refining:
Year
Type
Indexed by
Source
Complex
Co-
Language
Clean All
Abstract :
A problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In this note, we provide the definitions of sigma k-curvatures and sigma k-Einstein manifolds, and we show that a closed sigma k-Einstein manifold under certain pinching conditions of a Weyl curvature and Einstein curvature is isometric to a quotient of a round sphere.
Keyword :
Einstein manifold Einstein manifold scalar curvature scalar curvature sigmak-curvatures sigmak-curvatures sigmak-Einstein manifolds sigmak-Einstein manifolds sphere theorem sphere theorem
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhong, Jingyang , Mu, Xinran . Sphere Theorems for σk-Einstein Manifolds [J]. | AXIOMS , 2025 , 14 (1) . |
MLA | Zhong, Jingyang 等. "Sphere Theorems for σk-Einstein Manifolds" . | AXIOMS 14 . 1 (2025) . |
APA | Zhong, Jingyang , Mu, Xinran . Sphere Theorems for σk-Einstein Manifolds . | AXIOMS , 2025 , 14 (1) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
主旨是在一般维数球面中的闭超曲面上构造一类泛函Tn作为Willmore泛函的推广.我们将证明Tn和原始Willmore泛函具有类似的性质,即Tn是共形不变的,并且当n为偶数时,Tn对应的变分极小闭超曲面同样满足Simons型不等式,这说明Tn-极小闭超曲面具有某种几何刚性.
Keyword :
Simons不等式 Simons不等式 Willmore泛函 Willmore泛函 共形不变量 共形不变量 共形几何 共形几何
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 钟景洋 , 楼文晓 . 球空间中一类新的Willmore型超曲面的Simons型定理 [J]. | 数学的实践与认识 , 2024 , 54 (10) : 178-185 . |
MLA | 钟景洋 等. "球空间中一类新的Willmore型超曲面的Simons型定理" . | 数学的实践与认识 54 . 10 (2024) : 178-185 . |
APA | 钟景洋 , 楼文晓 . 球空间中一类新的Willmore型超曲面的Simons型定理 . | 数学的实践与认识 , 2024 , 54 (10) , 178-185 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
We define the incomplete generalized bivariate Fibonacci p-polynomials and the incomplete generalized bivariate Lucas p-polynomials. We study their recursive relations and derive an interesting relationship through their generating functions. Subsequently, we prove an incomplete version of the well-known Fibonacci-Lucas relation and make some extensions to the relation involving incomplete generalized bivariate Fibonacci and Lucas p-polynomials. An argument about going from the regular to the incomplete Fibonacci-Lucas relation is discussed. We provide a relation involving the incomplete Leonardo and the incomplete Lucas-Leonardo p-numbers as an illustration.
Keyword :
bivariate Fibonacci p-polynomials bivariate Fibonacci p-polynomials Fibonacci-Lucas relation Fibonacci-Lucas relation incomplete generalized bivariate Fibonacci p-polynomials incomplete generalized bivariate Fibonacci p-polynomials
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhong, Jingyang , Yao, Jialing , Chung, Chan-Liang . A Note on Incomplete Fibonacci-Lucas Relations [J]. | SYMMETRY-BASEL , 2023 , 15 (12) . |
MLA | Zhong, Jingyang 等. "A Note on Incomplete Fibonacci-Lucas Relations" . | SYMMETRY-BASEL 15 . 12 (2023) . |
APA | Zhong, Jingyang , Yao, Jialing , Chung, Chan-Liang . A Note on Incomplete Fibonacci-Lucas Relations . | SYMMETRY-BASEL , 2023 , 15 (12) . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |