Query:
学者姓名:刘哲源
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
The uncontrolled dendritic growth and severe side reactions significantly constrain zinc-ion batteries' further application. This study presents a novel micellar gel electrolyte, innovatively designed through hydrophobic association. The micellar gel electrolyte harmonizes macroscopic and microscopic properties through a rational hierarchical design. At the macroscopic level, the hydrophilic domains as water-absorbing nets and the hydrophobic domains as pillars are intricately interwoven. On the microscopic scale, the copolymerization resulted in a microphase-separated architecture, with hydrophilic and hydrophobic domains establishing distinct micro-regions within the gel matrix. The hydrophilic domains contribute to the stabilization of the hydrogen bond network through amide groups, while the abundant carbonyl groups optimize the solvation structure and migration pathways of Zn2+. The hydrophobic domains provide a robust supporting framework while simultaneously reducing H2O activity and thereby minimizing parasitic reactions. Thus, the enhanced interfacial stability forms a robust and flexible barrier against dendrite formation. The rational hierarchical gel composition and cross-linked network effectively direct Zn deposition preferentially along the (002) plane, ensuring a uniform and stable interface. The assembled Zn & Vert;MnO2 batteries show 80% capacity retention after 1200 cycles at 1C.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Zheming , Lin, Yushuang , Shi, Dehuan et al. Rational hierarchical micellar gel electrolytes with synergistic hydrophobic-hydrophilic integration for dendrite-free zinc-ion batteries [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (9) : 6709-6718 . |
MLA | Chen, Zheming et al. "Rational hierarchical micellar gel electrolytes with synergistic hydrophobic-hydrophilic integration for dendrite-free zinc-ion batteries" . | JOURNAL OF MATERIALS CHEMISTRY A 13 . 9 (2025) : 6709-6718 . |
APA | Chen, Zheming , Lin, Yushuang , Shi, Dehuan , Song, Kangwei , Luo, Jing , Qiu, Yanbin et al. Rational hierarchical micellar gel electrolytes with synergistic hydrophobic-hydrophilic integration for dendrite-free zinc-ion batteries . | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (9) , 6709-6718 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
An ideal solid-state electrolyte needs to combine the properties of high ionic conductivity, wide electrochemical stability window, high electrode-electrolyte chemical compatibility, and low cost. Composite solid-state electrolyte is one of the feasible ways to solve this problem. In this work, a composite solid-state electrolyte Li2ZnSiO4 (LZSO)/ LiAlCl4 is reported. The low melting-point LiAlCl4 is introduced to solve the interfacial impedance problem of LZSO solid-state electrolyte due to the hardness of the particles. The structure and electrochemical properties of the two compositions were also characterized, and the effects of different composite ratios on the ionic conductivity of the composite solid-state electrolyte and the low-temperature healing surface structure on the performance enhancement were investigated. The optimal ratio LZSO/LiAlCl4 (7:3) exhibits good interfacial contactness and an ionic conductivity of 1.65 x 10(-4) S cm(-1) at 60 degrees C as well as a low activation energy of 0.31 eV. The assembled lithium symmetric batteries were stably cycled up to 750 h. Compared with the single component of LZSO, which cannot satisfy the full-cell assembly, Li/LFP batteries assembled with composite solid-state electrolytes exhibit good cycling performance.
Keyword :
Interfacial healing Interfacial healing Li2ZnSiO4 Li2ZnSiO4 LiAlCl4 LiAlCl4 Solid-state lithium metal batteries Solid-state lithium metal batteries
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xu, Chenyuan , Chao, Yu , Yang, Sisheng et al. A halide-oxide composite solid-state electrolyte for enhancing ionic conductivity by promoting interfacial healing through low-temperature heat treatment [J]. | JOURNAL OF SOLID STATE ELECTROCHEMISTRY , 2025 . |
MLA | Xu, Chenyuan et al. "A halide-oxide composite solid-state electrolyte for enhancing ionic conductivity by promoting interfacial healing through low-temperature heat treatment" . | JOURNAL OF SOLID STATE ELECTROCHEMISTRY (2025) . |
APA | Xu, Chenyuan , Chao, Yu , Yang, Sisheng , Li, Borong , Yu, Yan , Xu, Xiaoming et al. A halide-oxide composite solid-state electrolyte for enhancing ionic conductivity by promoting interfacial healing through low-temperature heat treatment . | JOURNAL OF SOLID STATE ELECTROCHEMISTRY , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
In the quest to align with industrial benchmarks, a noteworthy gap remains in the field of electrochemical nitrogen fixation, particularly in achieving high Faradaic efficiency (FE) and yield. The electrocatalytic nitrogen fixation process faces considerable hurdles due to the difficulty in cleaving the highly stable NN triple bond. Additionally, the electrochemical pathway for nitrogen fixation is often compromised by the concurrent hydrogen evolution reaction (HER), which competes aggressively for electrons and active sites on the catalyst surface, thereby reducing the FE of nitrogen reduction reaction (NRR). To surmount these challenges, this study introduces an innovative bimetallic catalyst, CuGa2, synthesized through p-d orbital hybridization to selectively facilitate N2 electroreduction. This catalyst has demonstrated a remarkable NH3 yield of 9.82 mu g h-1 cm-2 and an associated FE of 38.25%. Our findings elucidate that the distinctive p-d hybridization interaction between Ga and Cu enhances NH3 selectivity by reducing the reaction energy barrier for hydrogenation and suppressing hydrogen evolution. This insight highlights the significance of p-d orbital hybridization in optimizing the electrocatalytic performance of CuGa2 for nitrogen fixation.
Keyword :
Bimetallic catalyst Bimetallic catalyst CuGa 2 alloy CuGa 2 alloy Electrochemical nitrogen fixation Electrochemical nitrogen fixation Liquid metals Liquid metals p -d orbital hybridization p -d orbital hybridization
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Bin , Zheng, Chaoyang , Shi, Dehuan et al. p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction [J]. | CHINESE JOURNAL OF STRUCTURAL CHEMISTRY , 2025 , 44 (1) . |
MLA | Chen, Bin et al. "p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction" . | CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 44 . 1 (2025) . |
APA | Chen, Bin , Zheng, Chaoyang , Shi, Dehuan , Huang, Yi , Deng, Renxia , Wei, Yang et al. p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction . | CHINESE JOURNAL OF STRUCTURAL CHEMISTRY , 2025 , 44 (1) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Halide solid electrolytes receive much attention due to their electrochemical properties, such as high ionic conductivity, oxidative stability, and ease of preparation. In this work, a bromide solid electrolyte LiBiBr4, exhibiting ease of processing and high ionic conductivity, is designed for the first time and investigated through a comparative investigation with monoclinic LiAlCl4 and LiAlBr4 for the migration path. The processing pressure for LiBiBr4 with annealing at 120 degrees C is less than one-tenth that of other chloride electrolytes (approximate to 5 MPa). Computational analyses unveil crucial mechanistic insights into the three migration mechanisms and the factors that influence them within the monoclinic structure. The distribution and distance of non-Li polyhedrons to the migration pathways are pivotal for the migration. The strategic positioning of the Bi polyhedron in LiBiBr4 is far from the Li+ pathway. The unique leap migration within the LiBiBr4 has a lower energy barrier and facilitates an interconnected migration that forms a 3D interstice network. This interconnected leap migration network within LiBiBr4 constitutes a Z-type interstice leap migration along the ab-axis. Thus, the LiBiBr4 obtains a high ionic conductivity of 0.19 mS cm(-1) with the 0.349 eV low activation energy. This discovery and research methods provide significant impetus and support for the development of halogen-based electrolytes.
Keyword :
LiBiBr4 LiBiBr4 lithium Ion batteries lithium Ion batteries migration path migration path solid-state electrolyte solid-state electrolyte
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chao, Yu , Yang, Sisheng , Xu, Chenyuan et al. Z-Type Interstice Leap Migration Driving High Ionic Conductivity in Monoclinic LiBiBr4 Solid State Electrolyte [J]. | SMALL , 2025 . |
MLA | Chao, Yu et al. "Z-Type Interstice Leap Migration Driving High Ionic Conductivity in Monoclinic LiBiBr4 Solid State Electrolyte" . | SMALL (2025) . |
APA | Chao, Yu , Yang, Sisheng , Xu, Chenyuan , Li, Borong , Liu, Zheyuan , Fu, Xiaobin et al. Z-Type Interstice Leap Migration Driving High Ionic Conductivity in Monoclinic LiBiBr4 Solid State Electrolyte . | SMALL , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The influence of hydrogen bonding on spectroscopic properties is one of the fundamental issues in the field of luminescent organic-inorganic hybrid metal halides (OIMHs). We design and prepare three OIMHs, namely, crystals 1, 2 and 3, using 2,2 '-bipyridine and ZnCl2 as starting materials. From crystals 1 to 3, the hydrogen bonding environment surrounding the 2,2 '-bipyridinium cations gradually weakens, with both the dihedral angle and the number of hydrogen bonds around them decreasing progressively. Correspondingly, the blue emission belonging to the S1 -> S0 transition of the three crystals gradually increases, with crystal 3 exhibiting the strongest blue light emission and a photo-luminescence quantum yield reaching 34.10%. In crystal 1, the dense hydrogen bonding environment of the 2,2 '-bipyridinium cation results in an obvious energy transfer from S1 to T1. This reduces the population of the S1 state, thereby leading to weaker blue light emission. In crystals 2 and 3, the weaker hydrogen bonding environment and smaller spatial distortion of organic cations weaken or even prevent energy transfer between S1 and T1, thereby enhancing blue light emission. These findings provide new insights for exploring novel luminescent OIMHs and developing more effective means of regulating their luminescence performance. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)-(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(OIMHs)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)2,2 '-(sic)(sic)(sic)(sic)ZnCl2(sic)(sic)(sic), (sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)OIMH, (sic)(sic)(sic)1,2(sic)3. (sic)(sic)(sic)1(sic)(sic)(sic)3, 2,2 '-(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)S1 -> S0(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)3 (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)34.10%. (sic)(sic)(sic)1(sic), 2,2 '-(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)S1(sic)T1(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic) (sic)(sic)S1(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)2(sic)3(sic), (sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)S1(sic)T1(sic)(sic)(sic) (sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)OIMHs(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Keyword :
blue emission blue emission hydrogen bonding hydrogen bonding optical materials optical materials organic-inorganic hybrid metal halides organic-inorganic hybrid metal halides photoluminescence photoluminescence
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Qi , Huang, Tianwen , Liu, Zheyuan et al. Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals [J]. | SCIENCE CHINA-MATERIALS , 2025 , 68 (4) : 1004-1011 . |
MLA | Zhang, Qi et al. "Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals" . | SCIENCE CHINA-MATERIALS 68 . 4 (2025) : 1004-1011 . |
APA | Zhang, Qi , Huang, Tianwen , Liu, Zheyuan , Feng, Ya-Nan , Yu, Yan , Li, Lingyun . Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals . | SCIENCE CHINA-MATERIALS , 2025 , 68 (4) , 1004-1011 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Ether-based electrolytes exhibit low antioxidative properties (<4.2 V), significantly limiting their application in high-voltage cathodes. To address this gap, this study presents the leveraging ether C-H bond shielding (LEBS) strategy, an efficient approach to enhance the antioxidative properties of ether molecules through minimal functionalization. We selected a series of features related to conjugation effects, induction effects, and the molecular structure, using the change in carbon-hydrogen bond dissociation energy as the target value. Among the factors determining the antioxidative properties of ether molecules, the conjugation effect is dominant (89.72%) and negatively correlated with antioxidative properties. Therefore, weakening the stabilizing effect of the conjugation effect on ether carbon radicals is a crucial strategy for enhancing the antioxidative properties. The LEBS strategy categorizes ether molecules into symmetric and asymmetric types and classifies the functional groups on ether molecules to provide theoretical guidance for the modification scheme.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Shi, Dehuan , Wang, Lei , Chen, Zheming et al. The leveraging ether C-H bond shielding strategy for antioxidative electrolyte in lithium-ion batteries [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (12) : 8518-8525 . |
MLA | Shi, Dehuan et al. "The leveraging ether C-H bond shielding strategy for antioxidative electrolyte in lithium-ion batteries" . | JOURNAL OF MATERIALS CHEMISTRY A 13 . 12 (2025) : 8518-8525 . |
APA | Shi, Dehuan , Wang, Lei , Chen, Zheming , Liu, Zheyuan , Yu, Yan , Yang, Chengkai . The leveraging ether C-H bond shielding strategy for antioxidative electrolyte in lithium-ion batteries . | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (12) , 8518-8525 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Modulating interfacial electrochemistry represents a prevalent approach for mitigating lithium dendrite growth and enhancing battery performance. Nevertheless, while most additives exhibit inhibitory characteristics, the accelerating effects on interfacial electrochemistry have garnered limited attention. In this work, perfluoromorpholine (PFM) with facilitated kinetics is utilized to preferentially adsorb on the lithium metal interface. The PFM molecules disrupt the solvation structure of Li+ and enhance the migration of Li+. Combined with the benzotrifluoride, a synergistic acceleration-inhibition system is formed. The ab initio molecular dynamics (AIMD) and density functional theory (DFT) calculation of the loose outer solvation clusters and the key adsorption–deposition step supports the fast diffusion and stable interface electrochemistry with an accelerated filling mode with C─F and C─H groups. The approach induces the uniform lithium deposition. Excellent cycling performance is achieved in Li||Li symmetric cells, and even after 200 cycles in Li||NCM811 full cells, 80% of the capacity is retained. This work elucidates the accelerated electrochemical processes at the interface and expands the design strategies of acceleration fluorinated additives for lithium metal batteries. © 2024 Wiley-VCH GmbH.
Keyword :
acceleration acceleration AIMD AIMD interfacial adsorption interfacial adsorption lithium metal batteries lithium metal batteries outer and inner solvation cluster outer and inner solvation cluster
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zheng, X. , Qiu, Y. , Luo, J. et al. Perfluorinated Amines: Accelerating Lithium Electrodeposition by Tailoring Interfacial Structure and Modulated Solvation for High-Performance Batteries [J]. | Small , 2024 , 20 (44) . |
MLA | Zheng, X. et al. "Perfluorinated Amines: Accelerating Lithium Electrodeposition by Tailoring Interfacial Structure and Modulated Solvation for High-Performance Batteries" . | Small 20 . 44 (2024) . |
APA | Zheng, X. , Qiu, Y. , Luo, J. , Yang, S. , Yu, Y. , Liu, Z. et al. Perfluorinated Amines: Accelerating Lithium Electrodeposition by Tailoring Interfacial Structure and Modulated Solvation for High-Performance Batteries . | Small , 2024 , 20 (44) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The electrocatalytic sulfur oxidation reaction (SOR), marked by a multifaceted 16-electron transfer, stands as a pivotal advancement in lithium-sulfur battery technology. In this process, the initial conversion of Li2S to Li2S2 during the charging phase is identified as the rate-determining step, characterized by a significant energy barrier. The integration of a nanoflower-shaped transition metal selenide catalyst on carbon (FeSe2@C) catalyzes the SOR. The synergistic effect of d-p orbital hybridization in the Fe-S bond and the redox cycling between Fe2+ and Fe3+ facilitates electron transfer, thereby lowering the decomposition barrier of Li2S. This has been confirmed through both density functional theory (DFT) calculations and experimental electrocatalysis. The oxidation of Li2S is reliant on an efficient charge transfer mechanism, where electrons are progressively transferred to intermediate species, leading to direct interactions with Li2S and the formation of Li2S2. This conversion is corroborated by in situ Raman spectroscopy. The FeSe2@C catalyst significantly reduces the activation energy by enhancing charge transfer efficiency. At a current density of 1C, the battery exhibited an initial capacity of 581.3 mA h g−1, with a remarkable capacity retention of 97.5% after 600 cycles and a minimal capacity decay rate of 0.004% per cycle, indicative of superior cyclability. This research propels the electrocatalysis of Li2S in the charging phase of lithium-sulfur batteries, thereby accelerating the kinetics of the SOR and contributing to the field's progress. © 2024 The Royal Society of Chemistry.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zou, P. , Lin, Y. , Li, L. et al. Enhancing sulfur oxidation reaction by overcoming redox barriers with FeSe2@C for lithium-sulfur batteries [J]. | Journal of Materials Chemistry A , 2024 , 12 (39) : 26707-26717 . |
MLA | Zou, P. et al. "Enhancing sulfur oxidation reaction by overcoming redox barriers with FeSe2@C for lithium-sulfur batteries" . | Journal of Materials Chemistry A 12 . 39 (2024) : 26707-26717 . |
APA | Zou, P. , Lin, Y. , Li, L. , Wang, J. , Chao, Y. , Li, B. et al. Enhancing sulfur oxidation reaction by overcoming redox barriers with FeSe2@C for lithium-sulfur batteries . | Journal of Materials Chemistry A , 2024 , 12 (39) , 26707-26717 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Utilizing an interfacial layer to stabilize Zn-metal anodes has been extensively explored, often accompanied by inhibition of Zn dendrites. However, most interfacial layers primarily delay Zn2+ ion transport/transfer, leading to slow Zn deposition due to the ion kinetics hindrance. Basically, this ionic hysteresis effect is inherent to all interfacial layers and will cause unstable Zn deposition over extended cycling periods. Here, we present a simple composite interfacial layer composed of graphene acid (GA) and cellulose nanofibers (CNFs). In the CNF/GA layer, a delicate balance between the rapid Zn2+ transport/transfer and uniform Zn deposition is achieved. The presence of GA not only demonstrates excellent ion selectivity and suppresses corrosion reactions, but also promotes Zn2+ transport/transfer, significantly reducing the desolvation energy of Zn2+ ions. Consequently, the symmetric cell with CNF/GA coatings achieves a highly stable cycling life of 2920 h, surpassing previous reports using graphene-based and CNF-based protecting layers. Moreover, the full cell based on the CNF/GA protected anodes exhibits excellent long-term stability and maintains an ultra-stable self-discharge retention of 99% after 24 h of standing. These findings provide valuable insights for the development of protective layers for Zn-metal anodes and future grid-scale Zn battery deployment. © 2024 The Royal Society of Chemistry
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xia, K. , Li, L. , Qiu, Y. et al. Graphene acid-enhanced interfacial layers with high Zn2+ ion selectivity and desolvation capability for corrosion-resistant Zn-metal anodes [J]. | Journal of Materials Chemistry A , 2024 , 12 (36) : 24175-24187 . |
MLA | Xia, K. et al. "Graphene acid-enhanced interfacial layers with high Zn2+ ion selectivity and desolvation capability for corrosion-resistant Zn-metal anodes" . | Journal of Materials Chemistry A 12 . 36 (2024) : 24175-24187 . |
APA | Xia, K. , Li, L. , Qiu, Y. , Weng, J. , Shen, S. , Chen, M. et al. Graphene acid-enhanced interfacial layers with high Zn2+ ion selectivity and desolvation capability for corrosion-resistant Zn-metal anodes . | Journal of Materials Chemistry A , 2024 , 12 (36) , 24175-24187 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
To meet the demand for higher energy density in lithium-ion batteries, extensive research has focused on advanced cathodes and metallic lithium anodes. However, Ni-rich cathodes suffer from the inactive phase-transition and side reactions at the cathode-electrolyte interfaces (CEI). In this study, we propose a novel approach to enhance the solubility of LiNO3 in carbonate electrolyte systems using a local high-concentrated addition strategy with triethyl phosphate as a co-solvent. Rather than the traditional solvent-dominated solvation clusters, the NO3− dominated electrolyte is examined to elucidate unique complexation phenomena. Two distinct clusters in NO3− dominated electrolyte arising from as a consequence of intramolecular interactions intrinsic to the constituents. This promotes the formation of a homogeneous oxynitride interphase and facilitates more expeditious lithium ion diffusion kinetics. Hence, the less stress fragmentation and irreversible phase transformation occur on the cathode surface with the homogeneous oxynitridation interface. This innovative design enables efficient cycling of the Li || NCM811 cell, offering a promising strategy to improve lithium-ion batteries performance. © 2024 Elsevier B.V.
Keyword :
Ab initio molecular dynamics Ab initio molecular dynamics Lithium batteries Lithium batteries Ni-rich cathodes Ni-rich cathodes NO3− dominated weakly dissociated solvation clusters NO3− dominated weakly dissociated solvation clusters Solvent-dominated solvation clusters Solvent-dominated solvation clusters
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xiao, Y. , Zhang, W. , Dong, W. et al. Enhancing the Cathode/Electrolyte interface in Ni-Rich Lithium-Ion batteries through homogeneous oxynitridation enabled by NO3− dominated clusters [J]. | Chemical Engineering Journal , 2024 , 494 . |
MLA | Xiao, Y. et al. "Enhancing the Cathode/Electrolyte interface in Ni-Rich Lithium-Ion batteries through homogeneous oxynitridation enabled by NO3− dominated clusters" . | Chemical Engineering Journal 494 (2024) . |
APA | Xiao, Y. , Zhang, W. , Dong, W. , Yang, K. , Chao, Y. , Xi, C. et al. Enhancing the Cathode/Electrolyte interface in Ni-Rich Lithium-Ion batteries through homogeneous oxynitridation enabled by NO3− dominated clusters . | Chemical Engineering Journal , 2024 , 494 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |