• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:林培杰

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 19 >
损失自适应的高感知质量生成对抗超分辨率网络
期刊论文 | 2025 , 53 (1) , 26-34 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(1)

Abstract :

为解决生成对抗网络训练过程中因损失简单加权导致的图像感知质量下降问题,提出损失自适应调整的生成对抗超分辨率网络(LA-GAN).首先,该方法设计通过计算角点分布的相关强度大小,区分规则纹理区域与不规则纹理区域.其次,基于不同区域,设计了区域自适应生成对抗学习框架.在该框架中,网络只在不规则纹理区域中进行对抗学习,提高感知质量.此外,基于下采样图像和图像块相似性的重组图像取代训练集中的高分辨率图像,实现平均绝对损失在不规则纹理区域弱约束网络,在规则纹理区域强约束网络,保证图像信号保真度.最后,通过实验证明经过优化的网络在信号保真度和感知质量方面皆有提升.

Keyword :

区域自适应 区域自适应 损失函数 损失函数 生成对抗网络 生成对抗网络 超分辨率 超分辨率

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 林旭锋 , 吴丽君 , 陈志聪 et al. 损失自适应的高感知质量生成对抗超分辨率网络 [J]. | 福州大学学报(自然科学版) , 2025 , 53 (1) : 26-34 .
MLA 林旭锋 et al. "损失自适应的高感知质量生成对抗超分辨率网络" . | 福州大学学报(自然科学版) 53 . 1 (2025) : 26-34 .
APA 林旭锋 , 吴丽君 , 陈志聪 , 林培杰 , 程树英 . 损失自适应的高感知质量生成对抗超分辨率网络 . | 福州大学学报(自然科学版) , 2025 , 53 (1) , 26-34 .
Export to NoteExpress RIS BibTex

Version :

损失自适应的高感知质量生成对抗超分辨率网络
期刊论文 | 2025 , 53 (01) , 26-34 | 福州大学学报(自然科学版)
利用GAT的光伏阵列故障诊断方法
期刊论文 | 2024 , 52 (5) , 505-512 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(1)

Abstract :

提出一种基于图注意力网络(graph attention network,GAT)的光伏阵列故障诊断模型,以解决光伏阵列中因故障导致的发电效率降低、正常运行受阻等问题.通过离散小波变换和滑窗算法截取故障后稳态时序信号并将其分割成子区间,将子区间视为图节点.使用K邻近构图法将故障后稳态电压、电流数据转变成图结构,构建节点级GAT模型.通过多头注意力机制自动提取电压、电流图结构的故障特征.通过实验室光伏阵列获取实验数据集,对所提模型进行测试.结果表明,本模型能准确诊断光伏阵列的不同故障状态,平均准确率达到99.790%,效果优于所对比的其他网络模型.

Keyword :

光伏阵列 光伏阵列 图神经网络 图神经网络 图结构 图结构 故障诊断 故障诊断 注意力机制 注意力机制

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 董浪灿 , 卢箫扬 , 林培杰 et al. 利用GAT的光伏阵列故障诊断方法 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (5) : 505-512 .
MLA 董浪灿 et al. "利用GAT的光伏阵列故障诊断方法" . | 福州大学学报(自然科学版) 52 . 5 (2024) : 505-512 .
APA 董浪灿 , 卢箫扬 , 林培杰 , 程树英 , 陈志聪 , 吴丽君 . 利用GAT的光伏阵列故障诊断方法 . | 福州大学学报(自然科学版) , 2024 , 52 (5) , 505-512 .
Export to NoteExpress RIS BibTex

Version :

利用GAT的光伏阵列故障诊断方法
期刊论文 | 2024 , 52 (05) , 505-512 | 福州大学学报(自然科学版)
利用物理和数据驱动的光伏性能退化建模方法
期刊论文 | 2024 , 52 (5) , 513-519 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(1)

Abstract :

为提高户外光伏电站现场退化评估的准确性和可靠性,提出一种物理和数据驱动的光伏组件性能退化模型.研究户外光伏组件受静态温度、循环温度、相对湿度和紫外线影响的特性,并综合动态应力函数,利用累积损失模型对多应力下光伏电站性能退化进行建模.此外,退化模型的未知参数通过遗传算法来提取.使用美国国家太阳辐射数据库的长期数据对该模型进行训练和测试.将性能退化实际值和模型计算值进行对比,结果表明,本研究所提出模型的相对误差更低,验证了该方法的可行性.

Keyword :

优化算法 优化算法 光伏电站 光伏电站 光伏退化 光伏退化 数据驱动 数据驱动

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 王宇钖 , 陈志聪 , 吴丽君 et al. 利用物理和数据驱动的光伏性能退化建模方法 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (5) : 513-519 .
MLA 王宇钖 et al. "利用物理和数据驱动的光伏性能退化建模方法" . | 福州大学学报(自然科学版) 52 . 5 (2024) : 513-519 .
APA 王宇钖 , 陈志聪 , 吴丽君 , 俞金玲 , 程树英 , 林培杰 . 利用物理和数据驱动的光伏性能退化建模方法 . | 福州大学学报(自然科学版) , 2024 , 52 (5) , 513-519 .
Export to NoteExpress RIS BibTex

Version :

利用物理和数据驱动的光伏性能退化建模方法
期刊论文 | 2024 , 52 (05) , 513-519 | 福州大学学报(自然科学版)
采用PCA-CSA-Informer模型的光伏短期发电量预测
期刊论文 | 2024 , 52 (6) , 681-690 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(1)

Abstract :

为提高光伏发电的预测精确度,提出一种结合主成分分析(PCA)、双通道注意力(CSA)机制和Informer的短期光伏发电量预测新模型.采用Spearman相关分析方法对光伏发电的多元时间序列进行分析,并结合PCA提取时序特征,构建输入数据集.同时,引入CSA机制模块,提取光伏发电历史数据的时间维度和空间维度的特征,然后输入Informer模型进行预测.采用以 30 min为分辨率的光伏电站公开数据集进行实验验证和对比分析.实验结果表明,本研究所提出的预测模型在 4 步预测中的平均绝对误差为 0.061 5,均方误差为0.0205,均方根误差为 0.1435,R2 为 0.9872,均优于其他比较模型,有望为光伏短期发电量预测提供更好的预测精确度.

Keyword :

Informer模型 Informer模型 主成分分析 主成分分析 光伏发电预测 光伏发电预测 双通道注意力机制 双通道注意力机制 短期发电量 短期发电量

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 蔡伟雄 , 陈志聪 , 吴丽君 et al. 采用PCA-CSA-Informer模型的光伏短期发电量预测 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (6) : 681-690 .
MLA 蔡伟雄 et al. "采用PCA-CSA-Informer模型的光伏短期发电量预测" . | 福州大学学报(自然科学版) 52 . 6 (2024) : 681-690 .
APA 蔡伟雄 , 陈志聪 , 吴丽君 , 程树英 , 林培杰 . 采用PCA-CSA-Informer模型的光伏短期发电量预测 . | 福州大学学报(自然科学版) , 2024 , 52 (6) , 681-690 .
Export to NoteExpress RIS BibTex

Version :

采用PCA-CSA-Informer模型的光伏短期发电量预测
期刊论文 | 2024 , 52 (06) , 681-690 | 福州大学学报(自然科学版)
基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型
期刊论文 | 2024 , 52 (6) , 667-673 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(1)

Abstract :

提出一种基于高效通道注意(ECA)网络和双向长短期记忆神经网络(BILSTM)的自适应智慧路灯边缘计算模型.首先,在BILSTM的基础上,融合布谷鸟算法、通道注意力机制,构建CS-ECA-BILSTM能见度预测模型,实现道路能见度预测;其次,为普通路灯控制因子单一的问题引入照度和色温因子,提高控制效率并降低路灯能耗;最后,在边缘端引入云原生理念,使用KubeEdge框架与容器技术部署路灯控制模型到边缘端,从而实现多路灯控制.实验结果表明,所提出CS-ECA-BILSTM模型的性能优于其他对比模型,可有效提高路灯能源利用率,且能实现在边缘端的运行.

Keyword :

双向长短期记忆神经网络 双向长短期记忆神经网络 容器技术 容器技术 智慧路灯 智慧路灯 注意力机制 注意力机制 边缘计算 边缘计算

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 郭泽鑫 , 林培杰 , 程树英 et al. 基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型 [J]. | 福州大学学报(自然科学版) , 2024 , 52 (6) : 667-673 .
MLA 郭泽鑫 et al. "基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型" . | 福州大学学报(自然科学版) 52 . 6 (2024) : 667-673 .
APA 郭泽鑫 , 林培杰 , 程树英 , 陈志聪 , 吴丽君 . 基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型 . | 福州大学学报(自然科学版) , 2024 , 52 (6) , 667-673 .
Export to NoteExpress RIS BibTex

Version :

基于CS-ECA-BILSTM与KubeEdge的自适应智慧路灯边缘计算模型
期刊论文 | 2024 , 52 (06) , 667-673 | 福州大学学报(自然科学版)
Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model SCIE
期刊论文 | 2024 , 651 | JOURNAL OF HYDROLOGY
Abstract&Keyword Cite Version(2)

Abstract :

Short-term water demand forecasting is essential for ensuring the sustainable use of water resources. The accuracy of water demand forecasting directly impacts the rationality of water resources management and the effectiveness of scheduling. Therefore, it is vital to accurately forecast water demand across various timescales. Based on this motivation, we propose an improved patch time series Transformer (PatchTST) model to forecast the multi-timescale short-term water demand. By introducing relative positional encoding (RPE), the model effectively learns the relationships between tokens. The model combines the global token information capture ability of the self-attention mechanism with the local token information capture ability of the convolutional network to enhance feature extraction abilities. Additionally, the model integrates the advantages of patch-wise and series-wise representation, enabling it to simultaneously capture both local and global dependencies in time series. We utilize historical data collected from district metering area to experimentally validate the effectiveness of the proposed model. Compared with one-dimensional convolutional neural network (1D-CNN), long shortterm memory (LSTM), Transformer, DLinear, and PatchTST models, our model demonstrates superior performance across all five forecasting scales. Finally, the effectiveness of the proposed design is further validated through ablation experiments.

Keyword :

Deep learning Deep learning Multi-timescale Multi-timescale PatchTST PatchTST Water demand forecasting Water demand forecasting

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Zhang, Xiangxin , Gong, Longcong et al. Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model [J]. | JOURNAL OF HYDROLOGY , 2024 , 651 .
MLA Lin, Peijie et al. "Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model" . | JOURNAL OF HYDROLOGY 651 (2024) .
APA Lin, Peijie , Zhang, Xiangxin , Gong, Longcong , Lin, Jingwei , Zhang, Jie , Cheng, Shuying . Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model . | JOURNAL OF HYDROLOGY , 2024 , 651 .
Export to NoteExpress RIS BibTex

Version :

Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model EI
期刊论文 | 2025 , 651 | Journal of Hydrology
Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model Scopus
期刊论文 | 2025 , 651 | Journal of Hydrology
改进YOLOv5的光伏组件热斑及遮挡物检测 PKU
期刊论文 | 2023 , 51 (1) , 33-40 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(2)

Abstract :

针对光伏组件热斑若未及时发现处理,会严重影响光伏组件及阵列正常运行的问题,为了有效检测光伏阵列热斑,提出一种基于YOLOv5框架的深度学习热斑检测方法.首先,采用像素加权平均法融合红外和可见光图像作为检测对象,实现同时对光伏组件热斑和遮挡物的检测,并初步分析热斑成因.其次,改进模型框架,在轻量级网络MobileNetV3-large的基础上,融合坐标注意力机制,设计更轻量、更高效的MobileNetCA作为特征提取网络.然后,针对训练中正负样本数量极不平衡的情况,更换损失函数为变焦距损失函数,达到训练中突出正例的效果.同时,改进模型anchor box目标框生成算法,使生成的目标框与实际标注框更一致.实验结果表明,改进后的模型mAP为88.9%,较原YOLOv5s模型提升了3.8%,且模型参数量仅为原模型的48.6%.

Keyword :

MobileNetV3-large MobileNetV3-large YOLOv5 YOLOv5 光伏组件 光伏组件 变焦距损失函数 变焦距损失函数 坐标注意力机制 坐标注意力机制 热斑检测 热斑检测 红外可见光融合 红外可见光融合

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 魏卓航 , 林培杰 , 陈志聪 et al. 改进YOLOv5的光伏组件热斑及遮挡物检测 [J]. | 福州大学学报(自然科学版) , 2023 , 51 (1) : 33-40 .
MLA 魏卓航 et al. "改进YOLOv5的光伏组件热斑及遮挡物检测" . | 福州大学学报(自然科学版) 51 . 1 (2023) : 33-40 .
APA 魏卓航 , 林培杰 , 陈志聪 , 吴丽君 , 卢箫扬 , 程树英 . 改进YOLOv5的光伏组件热斑及遮挡物检测 . | 福州大学学报(自然科学版) , 2023 , 51 (1) , 33-40 .
Export to NoteExpress RIS BibTex

Version :

改进YOLOv5的光伏组件热斑及遮挡物检测 PKU
期刊论文 | 2023 , 51 (01) , 33-40 | 福州大学学报(自然科学版)
改进YOLOv5的光伏组件热斑及遮挡物检测 PKU
期刊论文 | 2023 , 51 (01) , 33-40 | 福州大学学报(自然科学版)
An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images SCIE
期刊论文 | 2023 , 199 | POSTHARVEST BIOLOGY AND TECHNOLOGY
WoS CC Cited Count: 15
Abstract&Keyword Cite Version(1)

Abstract :

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5-13 mu m) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.

Keyword :

Apple Apple Bruise detection Bruise detection Cold excitation Cold excitation Thermal imaging Thermal imaging YOLOv5s YOLOv5s

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Yang, Hua , Cheng, Shuying et al. An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images [J]. | POSTHARVEST BIOLOGY AND TECHNOLOGY , 2023 , 199 .
MLA Lin, Peijie et al. "An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images" . | POSTHARVEST BIOLOGY AND TECHNOLOGY 199 (2023) .
APA Lin, Peijie , Yang, Hua , Cheng, Shuying , Guo, Feng , Wang, Lijin , Lin, Yaohai . An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images . | POSTHARVEST BIOLOGY AND TECHNOLOGY , 2023 , 199 .
Export to NoteExpress RIS BibTex

Version :

An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images Scopus
期刊论文 | 2023 , 199 | Postharvest Biology and Technology
Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset SCIE
期刊论文 | 2023 , 253 , 360-374 | SOLAR ENERGY
WoS CC Cited Count: 13
Abstract&Keyword Cite Version(2)

Abstract :

Accurate faults diagnosis for photovoltaic (PV) array is one of the vital factors that guarantee the reliable operation of PV power plant. Artificial intelligence (AI) based fault detection and diagnosis (FDD) models are promising techniques. In order to automatically extract the faults features from the raw electrical data of PV array and create efficient FDD model with small dataset, a FDD scheme using Wasserstein generative adversarial network (WGAN) and convolutional neural network (CNN) is designed. The proposed FDD model is consisting of three modules, a discriminator, a generator and a classifier for fault diagnosis. By analyzing sequential PV data in a 2-Dimension way, the proposed discriminator and generator learn the distribution of PV data under various PV system operations. Then they are utilized to generate more labeled samples to improve the performance of the CNN based classifier. Thus, the proposed FDD model can be trained only requiring minor labeled samples. A laboratory grid-connected PV system is established to experimentally investigate the performance of the developed method. The results demonstrate that the designed FDD model can accurately diagnose line-line and open circuit faults.

Keyword :

Convolutional Neural Network Convolutional Neural Network Deep Learning Deep Learning Faults Diagnosis Faults Diagnosis Generative Adversarial Network Generative Adversarial Network Photovoltaic Array Photovoltaic Array

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lu, Xiaoyang , Lin, Yaohai , Lin, Peijie et al. Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset [J]. | SOLAR ENERGY , 2023 , 253 : 360-374 .
MLA Lu, Xiaoyang et al. "Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset" . | SOLAR ENERGY 253 (2023) : 360-374 .
APA Lu, Xiaoyang , Lin, Yaohai , Lin, Peijie , He, Xiangjian , Fang, Gengfa , Cheng, Shuying et al. Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset . | SOLAR ENERGY , 2023 , 253 , 360-374 .
Export to NoteExpress RIS BibTex

Version :

Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset EI
期刊论文 | 2023 , 253 , 360-374 | Solar Energy
Efficient fault diagnosis approach for solar photovoltaic array using a convolutional neural network in combination of generative adversarial network under small dataset Scopus
期刊论文 | 2023 , 253 , 360-374 | Solar Energy
利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法 PKU
期刊论文 | 2023 , 51 (4) , 482-489 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(2)

Abstract :

针对光伏阵列输出的实时电压电流时序信号包含复杂时变特性及噪声从而影响故障诊断精度的问题,提出一种基于坐标注意力的浅层ResNet网络故障诊断模型.首先利用相对位置矩阵方法将 3 种一维暂稳态时序数据,包括加权总电流,以及光伏阵列时序电压和电流,转换为二维数据,以此生成红、绿、蓝三通道图像.然后,将图像输入到所提的基于与坐标注意力结合的残差网络模型中,提取其丰富的故障信息,有效地提升故障诊断精度.最后,通过仿真和实际的故障模拟实验获取故障样本数据,以训练和测试所提的网络模型,并与多种其他网络模型进行对比,并对仿真数据集进行可靠性验证.经实验分析证明,提出的故障检测与诊断方法在准确性和稳定性方面都有更佳的表现,根据仿真平台获得的数据集也有较高的可靠性.

Keyword :

光伏阵列 光伏阵列 在线故障诊断 在线故障诊断 坐标注意力 坐标注意力 残差网络 残差网络 相对位置矩阵 相对位置矩阵

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 江文开 , 陈志聪 , 吴丽君 et al. 利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法 [J]. | 福州大学学报(自然科学版) , 2023 , 51 (4) : 482-489 .
MLA 江文开 et al. "利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法" . | 福州大学学报(自然科学版) 51 . 4 (2023) : 482-489 .
APA 江文开 , 陈志聪 , 吴丽君 , 林培杰 , 程树英 . 利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法 . | 福州大学学报(自然科学版) , 2023 , 51 (4) , 482-489 .
Export to NoteExpress RIS BibTex

Version :

利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法 PKU
期刊论文 | 2023 , 51 (04) , 482-489 | 福州大学学报(自然科学版)
利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法 PKU
期刊论文 | 2023 , 51 (04) , 482-489 | 福州大学学报(自然科学版)
10| 20| 50 per page
< Page ,Total 19 >

Export

Results:

Selected

to

Format:
Online/Total:470/11230372
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1