Query:
学者姓名:李凌云
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
Heterojunction photocatalysts, which consist of two or more semiconductors, have garnered significant attention owing to their extensive benefits, including a broad-spectrum response, efficient carrier separation and migration, as well as robust redox capabilities. Among the myriad of semiconductors, graphitic carbon nitride (g-C3N4) and zinc indium sulfide (ZnIn2S4) have been extensively researched due to their low toxicity, straightforward and scalable synthesis processes, controllable microstructures, and exceptional chemical stability. Recently, there has been a trend towards integrating these two semiconductors to complement each other's strengths. Consequently, a systematic summary and outlook on g-C3N4/ZnIn2S4 heterojunction photocatalysts is both urgent and valuable. This review summarizes the advancements in the g-C3N4/ZnIn2S4 heterojunctions in the last 10 years. We first analyzed the charge-transfer mechanisms in the type-I, type-II, Z-scheme and S-scheme heterojunctions. Then the typical synthesis methods employed for creating g-C3N4/ZnIn2S4 heterojunctions are introduced. Subsequently, we delve into the regulation strategies for g-C3N4/ZnIn2S4 heterojunctions, including morphology optimization, heteroatom doping, defect engineering, and the construction of multinary composites. The design concept and superiorities of these strategies are thoroughly discussed. Following this, we systematically showcase the photocatalytic applications of g-C3N4/ZnIn2S4 heterojunctions, encompassing CO2 reduction, H2 evolution, pollutant degradation, H2O2 production, biomass conversion, photoelectrochemical sensors, and so forth. Last, we propose the challenges that lie ahead in future research endeavors. This comprehensive review is expected to provide an instructive guideline for rational design and applications of g-C3N4/ZnIn2S4 heterojunctions.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lu, Yongjun , Zhuang, Zanyong , Li, Lingyun et al. Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (7) : 4718-4745 . |
MLA | Lu, Yongjun et al. "Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts" . | JOURNAL OF MATERIALS CHEMISTRY A 13 . 7 (2025) : 4718-4745 . |
APA | Lu, Yongjun , Zhuang, Zanyong , Li, Lingyun , Chen, Fei-Fei , Wei, Peishu , Yu, Yan . Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts . | JOURNAL OF MATERIALS CHEMISTRY A , 2025 , 13 (7) , 4718-4745 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Birefringent crystals play an irreplaceable role in optical systems by adjusting the polarization state of light in optical devices. This work successfully synthesized a new thiophosphate phase of B-Pb3 P2 S8 through the high-temperature solid-state spontaneous crystallization method. Different from the cubic a-Pb3 P2 S8 , the B-Pb3 P2 S8 crystallizes in the orthorhombic Pbcn space group. Notably, B-Pb3 P2 S8 shows a large band gap of 2.37 eV in lead-based chalcogenides, wide infrared transparent window (2.5-15 mu m), and excellent thermal stability. Importantly, the experimental birefringence shows the largest value of 0.26@550 nm in chalcogenides, even larger than the commercialized oxide materials. The Barder charge analysis result indicates that the exceptional birefringence effect is mainly from the Pb2 + and S2- in the [PbSn ] polyhedrons. Meanwhile, the parallelly arranged polyhedral layers could improve the structural anisotropic. Therefore, this work supports a new method for designing chalcogenides with exceptional birefringence effect in the infrared region. (c) 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
Keyword :
Birefringent crystals Birefringent crystals Chalcogenides Chalcogenides Optical properties Optical properties Structural ansotropic Structural ansotropic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Guo, Weiping , Zhu, Ying , Cui, Hong-Hua et al. B-Pb 3 P 2 S 8: A new optical crystal with exceptional birefringence effect [J]. | CHINESE CHEMICAL LETTERS , 2025 , 36 (2) . |
MLA | Guo, Weiping et al. "B-Pb 3 P 2 S 8: A new optical crystal with exceptional birefringence effect" . | CHINESE CHEMICAL LETTERS 36 . 2 (2025) . |
APA | Guo, Weiping , Zhu, Ying , Cui, Hong-Hua , Li, Lingyun , Yu, Yan , Luo, Zhong-Zhen et al. B-Pb 3 P 2 S 8: A new optical crystal with exceptional birefringence effect . | CHINESE CHEMICAL LETTERS , 2025 , 36 (2) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The influence of hydrogen bonding on spectroscopic properties is one of the fundamental issues in the field of luminescent organic-inorganic hybrid metal halides (OIMHs). We design and prepare three OIMHs, namely, crystals 1, 2 and 3, using 2,2 '-bipyridine and ZnCl2 as starting materials. From crystals 1 to 3, the hydrogen bonding environment surrounding the 2,2 '-bipyridinium cations gradually weakens, with both the dihedral angle and the number of hydrogen bonds around them decreasing progressively. Correspondingly, the blue emission belonging to the S1 -> S0 transition of the three crystals gradually increases, with crystal 3 exhibiting the strongest blue light emission and a photo-luminescence quantum yield reaching 34.10%. In crystal 1, the dense hydrogen bonding environment of the 2,2 '-bipyridinium cation results in an obvious energy transfer from S1 to T1. This reduces the population of the S1 state, thereby leading to weaker blue light emission. In crystals 2 and 3, the weaker hydrogen bonding environment and smaller spatial distortion of organic cations weaken or even prevent energy transfer between S1 and T1, thereby enhancing blue light emission. These findings provide new insights for exploring novel luminescent OIMHs and developing more effective means of regulating their luminescence performance. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)-(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(OIMHs)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)2,2 '-(sic)(sic)(sic)(sic)ZnCl2(sic)(sic)(sic), (sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)OIMH, (sic)(sic)(sic)1,2(sic)3. (sic)(sic)(sic)1(sic)(sic)(sic)3, 2,2 '-(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)S1 -> S0(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)3 (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)34.10%. (sic)(sic)(sic)1(sic), 2,2 '-(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)S1(sic)T1(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic) (sic)(sic)S1(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)2(sic)3(sic), (sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)S1(sic)T1(sic)(sic)(sic) (sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)OIMHs(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Keyword :
blue emission blue emission hydrogen bonding hydrogen bonding optical materials optical materials organic-inorganic hybrid metal halides organic-inorganic hybrid metal halides photoluminescence photoluminescence
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Qi , Huang, Tianwen , Liu, Zheyuan et al. Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals [J]. | SCIENCE CHINA-MATERIALS , 2025 , 68 (4) : 1004-1011 . |
MLA | Zhang, Qi et al. "Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals" . | SCIENCE CHINA-MATERIALS 68 . 4 (2025) : 1004-1011 . |
APA | Zhang, Qi , Huang, Tianwen , Liu, Zheyuan , Feng, Ya-Nan , Yu, Yan , Li, Lingyun . Hydrogen bonding evolution and efficient blue light emission in a series of Zn-based organic-inorganic hybrid metal halide crystals . | SCIENCE CHINA-MATERIALS , 2025 , 68 (4) , 1004-1011 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned. © 2024 Wiley-VCH GmbH.
Keyword :
anti-counterfeiting anti-counterfeiting circularly polarized luminescence circularly polarized luminescence hybrid manganese halide hybrid manganese halide light-emitting diode light-emitting diode mechanoluminescence mechanoluminescence photoluminescence photoluminescence X-ray scintillator X-ray scintillator
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, W. , Zheng, W. , Li, L. et al. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications [J]. | Advanced Materials , 2024 , 36 (39) . |
MLA | Zhang, W. et al. "Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications" . | Advanced Materials 36 . 39 (2024) . |
APA | Zhang, W. , Zheng, W. , Li, L. , Huang, P. , Xu, J. , Shao, Z. et al. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications . | Advanced Materials , 2024 , 36 (39) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Studying lithium growth on diverse substrates with unique crystal structures is crucial for linking atomic and macroscopic views, which ensures a long cycle life and safety in lithium metal batteries. This work provides explanations on (1) the stages of nucleation, which are influenced by the adsorption-relaxation mechanism, (2) acquiring evolved traits of dendritic morphology from the embryo, and (3) the integration of the atomic and macroscopic perspectives through a variety of techniques at different scales to validate dendrite evolution. The heteroepitaxial growth process of the embryos is divided into two principal stages: nucleation and growth. The adsorption-type substrates exhibit characteristics of relatively lower average interaction energy and specific stress energy during the nucleation stage. At the growth stage, the adsorption-type substrate tends to facilitate multilayer growth. This work provides potential to design and material selection for lithium metal batteries, contributing to the development of safer, more efficient, and longer-lasting energy storage systems. © 2024 American Chemical Society.
Keyword :
Crystal atomic structure Crystal atomic structure Epitaxial growth Epitaxial growth Indium phosphide Indium phosphide Lithium batteries Lithium batteries
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Borong , Zhang, Weicheng , Yang, Kang et al. Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes [J]. | ACS Energy Letters , 2024 , 9 (10) : 5215-5224 . |
MLA | Li, Borong et al. "Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes" . | ACS Energy Letters 9 . 10 (2024) : 5215-5224 . |
APA | Li, Borong , Zhang, Weicheng , Yang, Kang , Li, Long , Luo, Jing , Lin, Qingqing et al. Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes . | ACS Energy Letters , 2024 , 9 (10) , 5215-5224 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Studying lithium growth on diverse substrates with unique crystal structures is crucial for linking atomic and macroscopic views, which ensures a long cycle life and safety in lithium metal batteries. This work provides explanations on (1) the stages of nucleation, which are influenced by the adsorption-relaxation mechanism, (2) acquiring evolved traits of dendritic morphology from the embryo, and (3) the integration of the atomic and macroscopic perspectives through a variety of techniques at different scales to validate dendrite evolution. The heteroepitaxial growth process of the embryos is divided into two principal stages: nucleation and growth. The adsorption-type substrates exhibit characteristics of relatively lower average interaction energy and specific stress energy during the nucleation stage. At the growth stage, the adsorption-type substrate tends to facilitate multilayer growth. This work provides potential to design and material selection for lithium metal batteries, contributing to the development of safer, more efficient, and longer-lasting energy storage systems.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Borong , Zhang, Weicheng , Yang, Kang et al. Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes [J]. | ACS ENERGY LETTERS , 2024 , 9 (10) : 5215-5224 . |
MLA | Li, Borong et al. "Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes" . | ACS ENERGY LETTERS 9 . 10 (2024) : 5215-5224 . |
APA | Li, Borong , Zhang, Weicheng , Yang, Kang , Li, Long , Luo, Jing , Lin, Qingqing et al. Bridging Atomic and Macroscopic Perspectives on Heteroepitaxial Growth in Lithium Metal Anodes . | ACS ENERGY LETTERS , 2024 , 9 (10) , 5215-5224 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned. This review focuses on the latest advancements in the development of organic-inorganic hybrid manganese(II) halides as efficient light-emitting materials, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for light-emitting diodes and X-ray scintillators. Current challenges and future efforts toward this active research field are envisioned. image
Keyword :
anti-counterfeiting anti-counterfeiting circularly polarized luminescence circularly polarized luminescence hybrid manganese halide hybrid manganese halide light-emitting diode light-emitting diode mechanoluminescence mechanoluminescence photoluminescence photoluminescence X-ray scintillator X-ray scintillator
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Wei , Zheng, Wei , Li, Lingyun et al. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications [J]. | ADVANCED MATERIALS , 2024 , 36 (39) . |
MLA | Zhang, Wei et al. "Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications" . | ADVANCED MATERIALS 36 . 39 (2024) . |
APA | Zhang, Wei , Zheng, Wei , Li, Lingyun , Huang, Ping , Xu, Jin , Zhang, Wen et al. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications . | ADVANCED MATERIALS , 2024 , 36 (39) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Developing efficient and robust artificial hydrogenases with sophisticated structure as catalysts is potential for practical solar hydrogen application, withstanding challenges proposed by oxygen generated in situ by water splitting. Based on Pearson's hard/soft acid/base (HSAB) theory and compartmental ligand strategy, we prepared a 3D heterometallic MOF, [Ni3Pr2(6-mna)6(H2O)4]center dot(H2O)5 (1) (6-mna = 6-mercaptonicotinate divalent anion), with alternately arranged redox-active NiS cluster-based nodes and redox-inactive PrO cluster-based nodes to mimic simultaneously both the active center and the surrounding polypeptide microenvironment in natural hydrogenase. Despite numerous negative effects caused by oxygen, with the sophisticated structure, 1 achieved both enhanced stability and efficient hydrogen producing activity of 40.3 mmol/g in air atmosphere. The influence of oxygen on photocatalytic hydrogen production was investigated by contrasting mechanisms of both photo-induced electron transferring step and chemical catalyzing step under aerobic and anerobic conditions. The reductive mechanism is promoted under anerobic conditions, whereas oxidative mechanism is favored in aerobic conditions due to the suppressed production of radical intermediate Fl3-center dot in the presence of oxygen, as evidenced by in-situ electron spin resonance spectroscopy and in-situ ultraviolet-visible absorption spectrum. This paper presents a simple method for MOFs to closely simulate both the active center and surrounding protein of biological enzymes, and offers a new pathway for developing stable and efficient catalyst for solar hydrogen production.
Keyword :
Aerobic solar hydrogen production Aerobic solar hydrogen production Artificial hydrogenase Artificial hydrogenase Heterometallic MOF Heterometallic MOF
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Feng, Ya-Nan , Xia, Yan , Yu, Shu-Wen et al. Mimicking the active site and microenvironment of hydrogenase in a heterometallic MOF with enhancing stability and high efficiency for aerobic solar hydrogen production [J]. | JOURNAL OF ALLOYS AND COMPOUNDS , 2024 , 1010 . |
MLA | Feng, Ya-Nan et al. "Mimicking the active site and microenvironment of hydrogenase in a heterometallic MOF with enhancing stability and high efficiency for aerobic solar hydrogen production" . | JOURNAL OF ALLOYS AND COMPOUNDS 1010 (2024) . |
APA | Feng, Ya-Nan , Xia, Yan , Yu, Shu-Wen , Wei, Zhi-Yan , Li, Lingyun , Chen, Fei-Fei et al. Mimicking the active site and microenvironment of hydrogenase in a heterometallic MOF with enhancing stability and high efficiency for aerobic solar hydrogen production . | JOURNAL OF ALLOYS AND COMPOUNDS , 2024 , 1010 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
All-inorganic lead-free luminescent metal halides doped with main-group ns(2)-electron ions have attracted considerable interest in a variety of optoelectronic applications. However, they normally suffer from severe thermal quenching of photoluminescence (PL) due to aggravated nonradiative relaxation at high temperatures. Herein, we report a new class of luminescent materials based on 5s(2)-electron Sb3+-doped 0D Cs3GdCl6 microcrystals (MCs), which exhibit intense yellowish PL at 540 nm under ultraviolet (UV) excitation, in parallel with a broad bandwidth of 510 meV, a large Stokes shift of 190 nm, a near-unity PL quantum yield, and remarkable resistance against thermal quenching (I-150 degrees C = 82.4%). Mechanistic investigation unravels that the broadband emission originates from the spin-orbital allowed P-3(1) -> S-1(0) transition of Sb3+ which experiences a dynamic Jahn-Teller distortion in the excited state. These properties facilitate Cs3GdCl6:Sb3+ MCs as an efficient yellowish phosphor for near-UV-converted white light-emitting diodes, demonstrating a high color-rendering index of 96.4 and excellent operational stability. This work provides not only fundamental insights into the excited-state dynamics of Sb3+ in Cs3GdCl6 MCs, but also a new way for the exploration of novel and highly emissive rare-earth halides through ns(2)-electron ion doping towards various light-emitting applications.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liang, Xiantian , Zhang, Wei , Shi, Yitong et al. Sb3+-doped 0D Cs3GdCl6 microcrystals with a near-unity photoluminescence quantum yield and high thermal quenching resistance for light-emitting application [J]. | JOURNAL OF MATERIALS CHEMISTRY C , 2024 , 12 (15) : 5538-5548 . |
MLA | Liang, Xiantian et al. "Sb3+-doped 0D Cs3GdCl6 microcrystals with a near-unity photoluminescence quantum yield and high thermal quenching resistance for light-emitting application" . | JOURNAL OF MATERIALS CHEMISTRY C 12 . 15 (2024) : 5538-5548 . |
APA | Liang, Xiantian , Zhang, Wei , Shi, Yitong , Zhang, Wen , Yang, Hongyi , Huang, Ping et al. Sb3+-doped 0D Cs3GdCl6 microcrystals with a near-unity photoluminescence quantum yield and high thermal quenching resistance for light-emitting application . | JOURNAL OF MATERIALS CHEMISTRY C , 2024 , 12 (15) , 5538-5548 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
As a class of emerging photoluminescent materials, hybrid halide crystals have drawn research attention for their potential application in the fields of light-emitting, security, and waveguide. Nevertheless, hybrid halide crystals containing antimony with long-term stability and tunable light emission are still increasingly in demand. In this work, serial new hybrid halide crystals (BZA)(2)ZnCl42H(2)O:xSb(3+) (x = 0-0.2, x represents the reaction ratio) and (BZA)(2)SbCl5 are synthesized (BZA = 2,4-diamino-6-phenyl-1,3,5-triazine). In (BZA)(2)ZnCl42H(2)O:xSb(3+) crystals, Sb3+ cations replace partial Zn2+ cations to form [SbCl4](-) tetrahedron. Red light emission caused by the substitution of Sb3+ for Zn2+ enhances as the doping rate increases, resulting in the tunable emission from light blue to pink and finally to dark red. There are two kinds of Sb3+ in (BZA)(2)SbCl5 crystal. Sb(1) has a sixfold coordination with Cl to form a [Sb(1)Cl-5]infinity 1D zigzag chain. Sb(2) atom adopts a fivefold coordination with Cl and is separated from each other by BZA(+) cations. (BZA)(2)SbCl5 crystal shows bright orange-yellow light emission with a photoluminescence quantum yield of 45%. Moreover, the organic-inorganic hybrid metal halide crystals containing antimony have excellent long-term stability, with phase and luminescence keeping nearly unchanged after more than six months in ambient air.
Keyword :
hybrid halide crystals hybrid halide crystals Sb3+ Sb3+ stability stability tunable light emission tunable light emission
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Yaqing , Jiang, Yan , Zhang, Qi et al. Antimony Doped Hybrid Zinc Halide Crystals with Tunable Light Emission and Long-Term Stability [J]. | ADVANCED OPTICAL MATERIALS , 2024 , 12 (12) . |
MLA | Zhang, Yaqing et al. "Antimony Doped Hybrid Zinc Halide Crystals with Tunable Light Emission and Long-Term Stability" . | ADVANCED OPTICAL MATERIALS 12 . 12 (2024) . |
APA | Zhang, Yaqing , Jiang, Yan , Zhang, Qi , Liu, Qingyi , Guo, Weiping , Zhang, Wei et al. Antimony Doped Hybrid Zinc Halide Crystals with Tunable Light Emission and Long-Term Stability . | ADVANCED OPTICAL MATERIALS , 2024 , 12 (12) . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |