Query:
学者姓名:魏明灯
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
Within the family of halide solid electrolytes (SEs), Li2ZrCl6 demonstrates high oxidative stability, cost-effectiveness, and mechanical deformability, positioning it as a promising candidate for SEs. However, the application of Li2ZrCl6 as a SEs was hindered by its low ionic conductivity at room temperature. Current strategies to enhance the ionic conductivity of Li2ZrCl6 primarily are focused on single cation or anion sublattice-engineering, each with distinct advantages and limitations. Here, we propose a novel cation and anion-sublattice-engineering strategy, termed CASE, to increase the amorphous content and thus enhance ionic conductivity. The incorporation of Cu2+ and O2- induces distinctive structural modifications within Li2ZrCl6. This structure corroborated through analytic data of X-ray absorption spectroscopy, the neutron diffraction, and ab initio molecular dynamics. Consequently, the amorphous Li2.1Zr0.95Cu0.05Cl4.4O0.8 achieves an enhanced ionic conductivity of 2.05 mS cm-1 at 25 degrees C. Furthermore, all-solid-state lithium batteries utilizing the amorphous Li2.1Zr0.95Cu0.05Cl4.4O0.8 as an electrolyte and LiNi0.83Co0.11Mn0.06O2 as a cathode exhibit a superior long-term cycling stability retaining 90.3% of capacity after 1000 cycles at 2 C under room temperature, which are much higher than those of Zr-based halide electrolytes in publications. Such a result might stimulate the development of more amorphous structures with high ionic conductivity in the CASE strategy.
Keyword :
Cation-anion sublattice engineering Cation-anion sublattice engineering Electrochemical property Electrochemical property Halide solid electrolytes Halide solid electrolytes Ionic conductivity all-solid-state lithium batteries Ionic conductivity all-solid-state lithium batteries
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Li, Zongnan , Mu, Yongbiao , Lu, Kunxi et al. Cation-Anion-Engineering Modified Oxychloride Zr-Based Lithium Superionic Conductors for All-Solid-State Lithium Batteries [J]. | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (23) . |
MLA | Li, Zongnan et al. "Cation-Anion-Engineering Modified Oxychloride Zr-Based Lithium Superionic Conductors for All-Solid-State Lithium Batteries" . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 64 . 23 (2025) . |
APA | Li, Zongnan , Mu, Yongbiao , Lu, Kunxi , Kang, Guojian , Yang, Ting , Huang, Shuping et al. Cation-Anion-Engineering Modified Oxychloride Zr-Based Lithium Superionic Conductors for All-Solid-State Lithium Batteries . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (23) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
2D perovskite materials are ideal candidates for indoor photovoltaic (IPV) applications due to their tunable bandgap, high absorption coefficients, and enhanced stability. However, attaining uniform crystallization and overcoming low carrier mobility remain key challenges for 2D perovskites, limiting their overall performance. In this study, a 2D perovskite light-absorbing layer is constructed using a Dion-Jacobson (DJ)-phase EDA(FA)(4)Pb5I16 (n = 5) and introduced butylammonium iodide (BAI) for interface modification, thereby creating a novel DJ/Ruddlesden-Popper (RP) dual 2D perovskite heterostructure. By adjusting the thickness of the BAI-based perovskite layer, the relationship between interfacial defect states and carrier mobility is investigated under varying indoor light intensities. The results indicate that, by achieving a balance between interfacial defect passivation and carrier transport, the optimized 2D perovskite device reaches a power conversion efficiency (PCE) of 30.30% and an open-circuit voltage (V-OC) of 936 mV under 1000 lux (3000 K LED). 2D-DJ/RP perovskite IPV exhibits a twentyfold increase in T-90 lifetime compared to 3D perovskite devices. It is the first time to systematically study 2D perovskites in IPV applications, demonstrating that rationally designed and optimized 2D perovskites hold significant potential for fabricating high-performance indoor PSCs.
Keyword :
2D perovskite solar cells 2D perovskite solar cells carrier transport carrier transport defect passivation defect passivation dual-phase 2D perovskite heterostructures dual-phase 2D perovskite heterostructures indoor photovoltaic indoor photovoltaic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Renjie , Wu, Jionghua , Zheng, Qiao et al. Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures [J]. | ADVANCED MATERIALS , 2025 , 37 (18) . |
MLA | Wang, Renjie et al. "Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures" . | ADVANCED MATERIALS 37 . 18 (2025) . |
APA | Wang, Renjie , Wu, Jionghua , Zheng, Qiao , Deng, Hui , Wang, Weihuang , Chen, Jing et al. Stable and Efficient Indoor Photovoltaics Through Novel Dual-Phase 2D Perovskite Heterostructures . | ADVANCED MATERIALS , 2025 , 37 (18) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
A simple route was applied to obtain Bi nanodiscs embedded into tannic acid (TA) derived carbon (Bi@TAC) by calcining Bi2O3@TA precursors. As a result, the Bi@TAC electrode showed an impressive rate capability (a current density ranging from 0.2 to 10 A g-1 with 95% capacity retention) and a long-term cycling performance (414.8 mA h g-1 after 10 000 cycles at 5 A g-1).
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Xiangyu , Zheng, Manyi , Wu, Chunzheng et al. Tannic acid-derived carbon-coated Bi nanodiscs for high-performance sodium-ion batteries [J]. | CHEMICAL COMMUNICATIONS , 2025 , 61 (29) : 5483-5486 . |
MLA | Zhang, Xiangyu et al. "Tannic acid-derived carbon-coated Bi nanodiscs for high-performance sodium-ion batteries" . | CHEMICAL COMMUNICATIONS 61 . 29 (2025) : 5483-5486 . |
APA | Zhang, Xiangyu , Zheng, Manyi , Wu, Chunzheng , Li, Sha , Li, Bing , Guo, Jianzhong et al. Tannic acid-derived carbon-coated Bi nanodiscs for high-performance sodium-ion batteries . | CHEMICAL COMMUNICATIONS , 2025 , 61 (29) , 5483-5486 . |
Export to | NoteExpress RIS BibTex |
Version :
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, Xu-Dong , Zhao, Si , Feng, Xin-Fu et al. Dendrite-free Mg-MOF-based all-solid-state lithium metal batteries with superior cycle life [J]. | RARE METALS , 2025 , 44 (4) : 2805-2814 . |
MLA | Chen, Xu-Dong et al. "Dendrite-free Mg-MOF-based all-solid-state lithium metal batteries with superior cycle life" . | RARE METALS 44 . 4 (2025) : 2805-2814 . |
APA | Chen, Xu-Dong , Zhao, Si , Feng, Xin-Fu , Huang, Jin , Wang, Yan , Qiu, Zhen-Chun et al. Dendrite-free Mg-MOF-based all-solid-state lithium metal batteries with superior cycle life . | RARE METALS , 2025 , 44 (4) , 2805-2814 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Ultraviolet (UV)-induced damage and limited solar spectrum utilization often hinder the performance of perovskite solar cells (PSCs). Here, a thermally activated delayed fluorescent (TADF) molecule, 4CzIPN, is introduced to address these challenges. Acting as a down-conversion agent, 4CzIPN can convert UV light to visible light via Forster energy transfer, enhancing light absorption and reducing photon loss. Additionally, it can bind Pb2+ defects and prevents organic cation degradation through cationic it-effects, stabilizing the perovskite structure. By serving as a crystal growth site, 4CzIPN can promote intermediate phase formation and delay the crystallization process, and improve film quality while mitigating residual stress due to its high thermal expansion coefficient. Furthermore, its UV filtration and hydrophobic properties would reduce perovskite decomposition and device degradation. These advancements yield a device with a remarkable power conversion efficiency (PCE) of 24.23 % and enhanced optoelectronic properties. The modified device demonstrates outstanding moisture and UV light stability, retaining 90 % of its initial efficiency after 1680 h under ambient conditions (25 +/- 5 degrees C, 15 +/- 5 % RH) without any encapsulation.
Keyword :
4CzIPN 4CzIPN Crystallization Crystallization Forster energy transfer Forster energy transfer Perovskite solar cells Perovskite solar cells UV stability UV stability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Hu, Ping , Zhang, Liujiang , Yang, Ruoxin et al. Energy transfer strategy inspired by TADF molecules for efficient and UV-Robust perovskite solar cells [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 513 . |
MLA | Hu, Ping et al. "Energy transfer strategy inspired by TADF molecules for efficient and UV-Robust perovskite solar cells" . | CHEMICAL ENGINEERING JOURNAL 513 (2025) . |
APA | Hu, Ping , Zhang, Liujiang , Yang, Ruoxin , Guo, Rongen , Gao, Xingyu , Wei, Mingdeng et al. Energy transfer strategy inspired by TADF molecules for efficient and UV-Robust perovskite solar cells . | CHEMICAL ENGINEERING JOURNAL , 2025 , 513 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Organic electrolyte is a threat to the safe operation for Ni-rich lithium ion batteries due to its flammability and high voltage cycle instability. Exploring advanced battery electrlytes with high safety and high voltage cyclability is of great significance to the development of electrical vehicles and grid energy storage. Herein, a multi-functional electrolyte additive, ethoxy-(pentafluoro)-cyclotriphosphazene, for high-safety and high-energy pouch-type LiNi0.8Mn0.1Co0.1O2|graphite (NMC811|Gr) cells is explored. It combined the structure of non-flammable cyclophosphazene with fluorine, with a good electrochemical compatibility. The high efficiency of the flame retardant produced properties that can not be achieved using "normal" fluorine-based flame retardants for thermal runaway inhibition. Moreover, the phosphazene (C2H5F5N3OP3)-based electrolyte (FPEele) endowed an NCM811|Gr pouch cell with extraordinary safety (thermal runaway trigger temperature increased by +41.7 degrees C, and its highest temperature is decreased by & horbar;205.7 degrees C) and electrochemical performance (4.5 V high-voltage cycling, 81.7% capacity retention after 200 cycles). The capacity fading and thermal safety of the battery are simultaneously improved based on the additive engineering. In fact, the phosphazene-based additive contained F, P, and N atoms, which stabilized the electrode interface and synergistically suppressed combustion during battery failure. Thus, such a work can provide a new ideal for designing a multi-functional electrolyte.
Keyword :
electrochemical property electrochemical property LiNi0.8Co0.1Mn0.1O2 LiNi0.8Co0.1Mn0.1O2 lithium ion battery lithium ion battery non-flammable electrolyte non-flammable electrolyte phosphazenes, safety phosphazenes, safety
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, Weifeng , Feng, Xuning , Huang, Wensheng et al. Thermal Runaway Inhibition of Lithium-Ion Batteries Employing Thermal-Driven Phosphazene Based Electrolytes [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
MLA | Zhang, Weifeng et al. "Thermal Runaway Inhibition of Lithium-Ion Batteries Employing Thermal-Driven Phosphazene Based Electrolytes" . | ADVANCED FUNCTIONAL MATERIALS (2025) . |
APA | Zhang, Weifeng , Feng, Xuning , Huang, Wensheng , Lu, Languang , Wang, Hewu , Wang, Li et al. Thermal Runaway Inhibition of Lithium-Ion Batteries Employing Thermal-Driven Phosphazene Based Electrolytes . | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Sodium/potassium ion batteries (SIBs/PIBs) are attractive energy storage devices that offer greater sustainability and economic efficiency compared to their lithium-ion battery (LIB) counterparts. However, conventional electrode materials with satisfactory cycling stability and rate capacity are still lacking, due to intrinsic low electronic conductivity, sluggish intrinsic ion/electron kinetics and unsatisfactory structural stability. Herein, a well-designed two-step electrospinning/annealing strategy has been employed to fabricate defect-rich WSxSe2-x nanocrystals within selenized polyacrylonitrile fibers (designated as WSSe-Se@PAN). By tuning the Se-doping into the PAN fibers and forming defect-rich WSxSe2-x nanocrystals, the synergistic coupling of S-vacancy regulation can enhance the active sites, expand the interlayer spacing, and accelerate Na+/K+ diffusion kinetics, simultaneously. The WSSe-Se@PAN electrode, serving as the anode, delivers a superior sodium storage performance (467 mA h g(-1) at 2.0 A g(-1) after 700 cycles), and shows a reversible discharge capacity of 299 mA h g(-1) at 0.5 A g(-1) after 60 cycles with 99.8% capacity retention for the sodium ion full batteries. Encouragingly, it displays excellent feasibility in a wide working temperature range between -15 and 50 degrees C for SIBs. Furthermore, it exhibits high-rate capability and robust cycling life (139 mA h g(-1) at 1.0 A g(-1) after 1000 cycles) for PIBs. This work demonstrates that defect engineering of metal chalcogenides by anion doping is a feasible strategy to achieve high-performance anode materials for alkali metal ion batteries.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xiao, Fuyu , Zhang, Jingran , Zhou, Weiming et al. Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range [J]. | INORGANIC CHEMISTRY FRONTIERS , 2024 , 11 (7) : 2164-2177 . |
MLA | Xiao, Fuyu et al. "Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range" . | INORGANIC CHEMISTRY FRONTIERS 11 . 7 (2024) : 2164-2177 . |
APA | Xiao, Fuyu , Zhang, Jingran , Zhou, Weiming , Fang, Yixing , He, Xiaotong , Lai, Wenbin et al. Defect-engineered WSxSe2-x nanocrystals anchored on selenized polyacrylonitrile fibers toward high-performance sodium/potassium-ion batteries with a wide working temperature range . | INORGANIC CHEMISTRY FRONTIERS , 2024 , 11 (7) , 2164-2177 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Transition metal dichalcogenides (TMDs) have enormous commercial potential as anode materials for all-solidstate lithium-ion batteries (ASSLIBs). Herein, the copper sulfides (CuS) with a hierarchical nanosphere structure are designed through a facile one-step solvothermal synthetic route. When employed as an anode for ASSLIBs, the CuS hierarchical nanospheres (hn-CuS) exhibited a high capacity of 350 mA h g(-1) after 50 cycles at a current density of 250 mA g(-1) and an outstanding rate capability. The unique three-dimensional (3D) structure of hn-CuS plays an important role in alleviating the volume expansion, thus obtaining excellent electrochemical properties. Moreover, ex-situ X-ray diffraction was used to investigate the possible kinetics and reaction mechanism of the hn-CuS anode. This work inspired a new promise for preparing the other TMDs as anode materials for ASSLIBs with high performance.
Keyword :
All-solid-state All-solid-state Copper sulfide Copper sulfide Electrochemical property Electrochemical property Lithium-ion battery Lithium-ion battery Nanospheres Nanospheres
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zheng, Yuxin , Liu, Shuo , Zheng, Junnan et al. Achieving high kinetics anode materials for all-solid-state lithium-ion batteries [J]. | JOURNAL OF ENERGY STORAGE , 2024 , 100 . |
MLA | Zheng, Yuxin et al. "Achieving high kinetics anode materials for all-solid-state lithium-ion batteries" . | JOURNAL OF ENERGY STORAGE 100 (2024) . |
APA | Zheng, Yuxin , Liu, Shuo , Zheng, Junnan , Kang, Guojian , Li, Yafeng , Yang, Siman et al. Achieving high kinetics anode materials for all-solid-state lithium-ion batteries . | JOURNAL OF ENERGY STORAGE , 2024 , 100 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Perovskite solar cells (PSCs) fabricated of TiO2 electron transporting material (ETM) have aroused tremendous attention, but their power conversion efficiency (PCE) needs further improvements. In this study, for the first time, zirconium (Zr)-doped brookite TiO2 nanorods (ZTO) are synthesized by a facile route and subsequently employed as an ETM in PSCs which finally achieves a considerable PCE of 19.42 % by optimizing all operating conditions. Further characterizations have been undertaken to explore in detail the effects of Zr doping on the nature of the perovskite active layer and the photovoltaic performance. As a consequence, the enhanced PCE can be ascribed to the high quality perovskite crystals and a more favorable energy level alignment between the perovskite layer and ZTO mesoporous layer.
Keyword :
Electron transporting material Electron transporting material Perovskite solar cells Perovskite solar cells Photovoltaic performance Photovoltaic performance Zr-doped brookiteTiO2 Zr-doped brookiteTiO2
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xie, Fengyan , Huang, Chunlei , Dong, Guofa et al. One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells [J]. | MATERIALS RESEARCH BULLETIN , 2024 , 173 . |
MLA | Xie, Fengyan et al. "One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells" . | MATERIALS RESEARCH BULLETIN 173 (2024) . |
APA | Xie, Fengyan , Huang, Chunlei , Dong, Guofa , Wu, Minghui , Wu, Kechen , Du, Shaowu et al. One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells . | MATERIALS RESEARCH BULLETIN , 2024 , 173 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Spiro-OMeTAD, as a crucial component of hole-transporting layer (HTL), exhibits limited mobility and conductivity, and the lithium bis-trifluoromethanesulfonimide dopant is sensitive to water vapor, which imposes restrictions on the photovoltaic properties of perovskite solar cells (PSCs). Herein, the iron-porphyrin (FePP) is introduced into Spiro-OMeTAD solution as additive, which facilitates the oxidation process of Spiro-OMeTAD, leading to the enhancement of hole mobility and hole extraction and transport. Besides, the surface Pb2+ defects of perovskite film are cured by the presence of carboxylic acids (-COOH) in FePP. As a result, the photovoltaic properties of PSCs with FePP additive have been improved with a power conversion efficiency (PCE) of 21.58%. Moreover, FePP can further anchor Li+ ions in HTL to prevent it from being invaded by water vapor. Dramatically, the degradation of unencapsulated devices with FePP is suppressed significantly, which retains 82.0% of its original PCE under 10-20% relative humidity (RH) after 7100 h and maintains about 79.6% of its original PCE under 50-60% RH after 1000 h. Thus, this study shows that the design and development of multifunctional HTL additives holds great potential for achieving highly efficient and durable PSCs. The iron-porphyrin additive can not only promote the oxidation of Spiro-OMeTAD and improve the extraction and transport of holes of HTL, but also passivate the Pb2+ defects of perovskite film and prevent the Li+ from being invaded by water vapor, which enhance the power conversion efficiency and stability of perovskite solar cells significantly.image (c) 2024 WILEY-VCH GmbH
Keyword :
additives additives hole-transporting layers hole-transporting layers iron-porphyrin iron-porphyrin preoxidation preoxidation stability stability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Guo, Minghuang , Liu, Chensi , Wu, Chenchen et al. Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells [J]. | SOLAR RRL , 2024 , 8 (8) . |
MLA | Guo, Minghuang et al. "Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells" . | SOLAR RRL 8 . 8 (2024) . |
APA | Guo, Minghuang , Liu, Chensi , Wu, Chenchen , Zhu, Jingwei , Hu, Ping , Li, Yafeng et al. Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells . | SOLAR RRL , 2024 , 8 (8) . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |