• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:郑茜颖

Refining:

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 6 >
结合扩张金字塔的脑部医学图像融合
期刊论文 | 2024 , 48 (01) , 16-21,29 | 电视技术
Abstract&Keyword Cite Version(1)

Abstract :

针对现有脑部医学图像融合算法存在的融合图像细节模糊和边缘性差等问题,设计一种扩张金字塔特征提取算法,由特征提取器、特征融合器和特征重构器3部分组成。特征提取器由扩张金字塔特征模块提取浅层和深层图像特征的结合,防止图像细节信息的丢失;特征融合器采用改进的功能能量比(Functional Energy Ratio,FER)特征融合策略增强融合图像边缘信息;特征重构器由4层卷积构成归一化图像。实验结果表明,相较于当前通用的脑部融合算法,所提出的算法具有较好的视觉效果和细节信息,客观评价指标有更好的表现。

Keyword :

多模态医学图像 多模态医学图像 特征融合 特征融合 特征重构 特征重构 脑部医学图像融合 脑部医学图像融合 金字塔特征 金字塔特征

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 马为民 , 郑茜颖 . 结合扩张金字塔的脑部医学图像融合 [J]. | 电视技术 , 2024 , 48 (01) : 16-21,29 .
MLA 马为民 等. "结合扩张金字塔的脑部医学图像融合" . | 电视技术 48 . 01 (2024) : 16-21,29 .
APA 马为民 , 郑茜颖 . 结合扩张金字塔的脑部医学图像融合 . | 电视技术 , 2024 , 48 (01) , 16-21,29 .
Export to NoteExpress RIS BibTex

Version :

结合扩张金字塔的脑部医学图像融合
期刊论文 | 2024 , 48 (1) , 16-21,29 | 电视技术
基于形变估计与运动补偿的医学CT图像层间超分辨率算法 CSCD PKU
期刊论文 | 2024 , 41 (04) , 1234-1238 | 计算机应用研究
Abstract&Keyword Cite Version(1)

Abstract :

针对医学断层图像层间分辨率较低的问题,提出了基于形变估计与运动补偿的医学CT图像层间超分辨率算法用于生成切片间图像,从而提高层间分辨率。首先利用U-Net对相邻两幅图像作多尺度特征提取与融合;其次,为了处理层间图像的复杂形变,使用基于自适应协作流的变形扭曲模块来实现相邻切片间的双向形变估计,设计层级信息递进融合模块对金字塔特征层进行特征聚合,对生成图进行运动补偿;最后经过后处理网络以减少异常像素点。该算法在两种CT数据集上进行验证,平均PSNR值分别达到了35.59 dB和30.76 dB,输出图能较好地恢复图像细节。与现有的一些方法对比,相关实验证明了该算法的有效性。

Keyword :

三维医学图像 三维医学图像 卷积神经网络 卷积神经网络 层间超分辨率 层间超分辨率 形变估计 形变估计

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 郑智震 , 郑茜颖 , 俞金玲 . 基于形变估计与运动补偿的医学CT图像层间超分辨率算法 [J]. | 计算机应用研究 , 2024 , 41 (04) : 1234-1238 .
MLA 郑智震 等. "基于形变估计与运动补偿的医学CT图像层间超分辨率算法" . | 计算机应用研究 41 . 04 (2024) : 1234-1238 .
APA 郑智震 , 郑茜颖 , 俞金玲 . 基于形变估计与运动补偿的医学CT图像层间超分辨率算法 . | 计算机应用研究 , 2024 , 41 (04) , 1234-1238 .
Export to NoteExpress RIS BibTex

Version :

基于形变估计与运动补偿的医学CT图像层间超分辨率算法 CSCD PKU
期刊论文 | 2024 , 41 (4) , 1234-1238 | 计算机应用研究
基于深度学习的光伏板缺陷分类定位算法研究
期刊论文 | 2024 , 44 (01) , 54-60 | 光电子技术
Abstract&Keyword Cite Version(1)

Abstract :

提出了一种基于深度学习技术的光伏板缺陷分类定位方法,用于快速准确地确定光伏板缺陷的位置和类型。为了克服传统单张图像缺陷检测方法的视角限制,采用图像配准、拼接等算法生成高分辨率的光伏全景图像,并使用深度学习技术对光伏板红外图像进行缺陷分类,通过与可见光图像进行对比,可以有效地确定光伏板缺陷的类型。光伏板缺陷分类的准确率、精确率、召回率和F1分数分别达到了93.71%、93.13%、93.20%和93.11%。与传统方法相比,该方法具有非接触、高效和快速等优点,适用于大规模光伏板缺陷的检测和定位,能够在短时间内获取准确、全面的光伏板缺陷信息。

Keyword :

光伏板 光伏板 拼接 拼接 深度学习 深度学习 缺陷 缺陷 缺陷分类 缺陷分类

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 刘枭雄 , 郑茜颖 . 基于深度学习的光伏板缺陷分类定位算法研究 [J]. | 光电子技术 , 2024 , 44 (01) : 54-60 .
MLA 刘枭雄 等. "基于深度学习的光伏板缺陷分类定位算法研究" . | 光电子技术 44 . 01 (2024) : 54-60 .
APA 刘枭雄 , 郑茜颖 . 基于深度学习的光伏板缺陷分类定位算法研究 . | 光电子技术 , 2024 , 44 (01) , 54-60 .
Export to NoteExpress RIS BibTex

Version :

基于深度学习的光伏板缺陷分类定位算法研究
期刊论文 | 2024 , 44 (1) , 54-60 | 光电子技术
LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery SCIE
期刊论文 | 2024 , 21 | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
Abstract&Keyword Cite Version(2)

Abstract :

Object detection using unmanned aerial vehicle (UAV) remote sensing images is a challenging task due to varying object scales, dense distribution, and the predominance of small object. Directly using a generalized object detector that has not been specially designed makes it difficult to balance accuracy and model complexity. To address this challenge, we propose a lighter and more accurate network (LMANet) model. First, a more effective loss function called IMIoU has been developed by combining the concepts of minimum point distance bounding box regression-based loss with auxiliary edge-assisted regression. Second, the model output reconstruction (MOR) was used to optimize the structure for small target objects. Third, we have designed an efficient feature extraction module (EFEM) that can effectively enhance the feature extraction capability of the backbone network for complex environmental information. Finally, to reduce the computational overhead of the model, we have designed a feature fusion lightweight strategy (FFLS) in the neck part, which significantly reduces the computational and parametric quantities of the model. The results of the LMANet on the VisDrone-2021DET and HIT-UAV datasets demonstrate a 4.7% and 2.3% improvement in mean average precision (mAP), respectively, compared to the benchmark model. Additionally, the model's parameters and computation are reduced by 79.3% and 12.6%, respectively.

Keyword :

Accuracy Accuracy Autonomous aerial vehicles Autonomous aerial vehicles Computational modeling Computational modeling Convolution Convolution Efficient feature extraction Efficient feature extraction Feature extraction Feature extraction Head Head lightweight lightweight model output reconstruction (MOR) model output reconstruction (MOR) multiobject detection multiobject detection Task analysis Task analysis unmanned aerial vehicle (UAV) unmanned aerial vehicle (UAV)

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Fu, Qingwei , Zheng, Qianying , Yu, Fan . LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery [J]. | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS , 2024 , 21 .
MLA Fu, Qingwei 等. "LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery" . | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 21 (2024) .
APA Fu, Qingwei , Zheng, Qianying , Yu, Fan . LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery . | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS , 2024 , 21 .
Export to NoteExpress RIS BibTex

Version :

LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery EI
期刊论文 | 2024 , 21 | IEEE Geoscience and Remote Sensing Letters
LMANet: A Lighter and More Accurate Multi-object Detection Network for UAV Remote Sensing Imagery Scopus
期刊论文 | 2024 , 21 , 1-1 | IEEE Geoscience and Remote Sensing Letters
基于深度循环网络结合上下文信息的血压预测
期刊论文 | 2023 , 40 (7) , 10-17 | 微电子学与计算机
Abstract&Keyword Cite Version(3)

Abstract :

近年来,高血压患者的比例不断上升,如何在血压值异常前发出警报提早治疗成为广泛关注的研究课题.为解决这一问题,提出了一种基于多层长短期记忆网络(LSTM)结合上下文信息层的组合预测模型.使用双向LSTM结构添加了从负时间方向的时序信息对当前状态的影响,加入LSTM残差连接解决多层网络带来的梯度消失和梯度爆炸问题.在输出层之前增加了一个额外的加入了用户的基本信息数据的全连接层.额外层的激活函数为修正线性单元(ReLU),使用多个时序数据对不同时段的血压进行预测.实验结果表明使用24个时序的实验结果最佳.在24个时序的数据集上,进行不同时段1h、6h、12 h、24h的血压预测,预测误差和预测偏差对于收缩压分别为 0.002 644、0.003 952、0.004216、0.005 528 和 0.037 796、0.047931、0.049 879、0.057 454,对于舒张压分别为 0.001 226、0.001 554、0.001 706、0.001 955 和 0.024293、0.028 369、0.030190、0.032668,实验误差与其他模型相比,所提模型预测误差和预测偏差都得到降低.

Keyword :

上下文信息 上下文信息 时间序列 时间序列 深度循环网络 深度循环网络 血压预测 血压预测

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 孙永莹 , 郑茜颖 . 基于深度循环网络结合上下文信息的血压预测 [J]. | 微电子学与计算机 , 2023 , 40 (7) : 10-17 .
MLA 孙永莹 等. "基于深度循环网络结合上下文信息的血压预测" . | 微电子学与计算机 40 . 7 (2023) : 10-17 .
APA 孙永莹 , 郑茜颖 . 基于深度循环网络结合上下文信息的血压预测 . | 微电子学与计算机 , 2023 , 40 (7) , 10-17 .
Export to NoteExpress RIS BibTex

Version :

基于深度循环网络结合上下文信息的血压预测
期刊论文 | 2023 , 40 (07) , 10-17 | 微电子学与计算机
基于深度循环网络结合上下文信息的血压预测
期刊论文 | 2023 , (07) , 10-17 | 微电子学与计算机
基于深度循环网络结合上下文信息的血压预测
期刊论文 | 2023 , (07) , 10-17 | 微电子学与计算机
基于U-Net改进的肺部轮廓与新冠病灶分割网络
期刊论文 | 2023 , 47 (1) , 8-15 | 电视技术
Abstract&Keyword Cite Version(2)

Abstract :

针对肺部新冠病灶在医学成像中具有大小不均匀、多集中于肺部边缘且灰度与胸腔灰度相近的特点,提出一种基于U-Net改进的用于肺部轮廓分割和新冠病灶分割的网络模型.所提出的方法采用加深的编解码路径,使用带有残差连接的编码器子模块代替原始U-Net的标准卷积单元.为了提高高级特征的表征能力,在编码器和解码器中间加入自注意力机制,来学习特征的内在关系.整理一个用于分割训练的数据集,共2973张新冠肺炎患者的肺部CT图片.实验结果表明,所提出的网络在肺部轮廓分割实验的Dice系数和F1系数分别达到了98.70%和98.89%,在新冠病灶分割实验中分别达到了87.47%和87.81%,优于其他对比模型.

Keyword :

U-Net U-Net 医学图像分割 医学图像分割 深度学习 深度学习 自注意力机制 自注意力机制

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 林培阳 , 郑茜颖 . 基于U-Net改进的肺部轮廓与新冠病灶分割网络 [J]. | 电视技术 , 2023 , 47 (1) : 8-15 .
MLA 林培阳 等. "基于U-Net改进的肺部轮廓与新冠病灶分割网络" . | 电视技术 47 . 1 (2023) : 8-15 .
APA 林培阳 , 郑茜颖 . 基于U-Net改进的肺部轮廓与新冠病灶分割网络 . | 电视技术 , 2023 , 47 (1) , 8-15 .
Export to NoteExpress RIS BibTex

Version :

基于U-Net改进的肺部轮廓与新冠病灶分割网络
期刊论文 | 2023 , 47 (01) , 8-15 | 电视技术
基于U-Net改进的肺部轮廓与新冠病灶分割网络
期刊论文 | 2023 , 47 (01) , 8-15 | 电视技术
A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults SCIE
期刊论文 | 2023 , 267 | SOLAR ENERGY
Abstract&Keyword Cite Version(2)

Abstract :

As photovoltaic (PV) arrays are exposed to the outdoors year-round, they are susceptible to various faults. The shading condition, degradation or dust coverage can make fault signals more complex, forming compound faults. These faults can lead to a large loss of power generation or irreversible damage to the PV modules, and even fires in severe cases. Moreover, unknown fault types that have never been seen in the training set may occur at actual working conditions. Therefore, accurate diagnosis of various types of single and compound faults (closed-set faults) by considering the identification of unknown faults, namely open-set faults diagnosis, is crucial to improve the efficiency of operation and maintenance. A 1D VoVNet-SVDD based open-set fault diagnosis model for PV arrays is proposed. The model is a two-stage network model consisting of a 1D VoVNet network and a multi-classification Support Vector Data Description (SVDD) in series. The 1D VoVNet network automatically extracts fault features from the input original I-V curve data. These extracted fault features are then combined with environmental parameters to construct the SVDD model. The SVDD identifies known fault types by con-structing a hypersphere for each fault type. Fault types that are not classified into any of the hyperspheres are considered as unknown faults, enabling open-set diagnosis. The experimental results show that the proposed model can accurately classify the closed-set faults among the three designed testing tasks while identify unknown type faults. The comparison demonstrates that the proposed algorithm is superior to the compared models.

Keyword :

Compound faults Compound faults Deep learning Deep learning Fault diagnosis Fault diagnosis Open -set Open -set Photovoltaic arrays Photovoltaic arrays

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Peijie , Guo, Feng , Lu, Xiaoyang et al. A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults [J]. | SOLAR ENERGY , 2023 , 267 .
MLA Lin, Peijie et al. "A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults" . | SOLAR ENERGY 267 (2023) .
APA Lin, Peijie , Guo, Feng , Lu, Xiaoyang , Zheng, Qianying , Cheng, Shuying , Lin, Yaohai et al. A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults . | SOLAR ENERGY , 2023 , 267 .
Export to NoteExpress RIS BibTex

Version :

A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults Scopus
期刊论文 | 2024 , 267 | Solar Energy
A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults EI
期刊论文 | 2024 , 267 | Solar Energy
基于改进CENet的新冠肺炎CT图像感染区域分割 CSCD PKU
期刊论文 | 2023 , 42 (11) , 139-142,146 | 传感器与微系统
Abstract&Keyword Cite Version(2)

Abstract :

针对新冠病毒感染肺部CT图像感染区域分割精度低,小目标分割困难等问题,提出了一种改进CENet分割模型。首先,在编码阶段加入注意力机制挤压和激励(SE)模块引入全局上下文信息,增强特征提取阶段的感受野,加大目标相关特征通道的权重,从而提高小目标的分割能力;其次,引入特征聚合模块(FAM),采用双线性插值的方法,融合了不同层次的图像特征,得到更具有判别能力的表达,进一步提高网络的分割精度。基于COVID—19—CT-Scans数据集的实验结果表明:该算法分割结果与真实结果之间的重叠率Dice值为74.32%,平均交并比(MIoU)为80.34%,灵敏度(Sen)为84.25%,特异性(Spec)为99.14%。与现有的多种分割算法相比,该方法能更好地分割出新冠病毒肺部感染区域。

Keyword :

CT图像 CT图像 图像处理 图像处理 感染区域分割 感染区域分割 注意力机制 注意力机制 特征聚合 特征聚合

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 邱纯乾 , 陈建森 , 郑茜颖 . 基于改进CENet的新冠肺炎CT图像感染区域分割 [J]. | 传感器与微系统 , 2023 , 42 (11) : 139-142,146 .
MLA 邱纯乾 et al. "基于改进CENet的新冠肺炎CT图像感染区域分割" . | 传感器与微系统 42 . 11 (2023) : 139-142,146 .
APA 邱纯乾 , 陈建森 , 郑茜颖 . 基于改进CENet的新冠肺炎CT图像感染区域分割 . | 传感器与微系统 , 2023 , 42 (11) , 139-142,146 .
Export to NoteExpress RIS BibTex

Version :

基于改进CENet的新冠肺炎CT图像感染区域分割 CSCD PKU
期刊论文 | 2023 , 42 (11) , 139-142,146 | 传感器与微系统
基于改进CENet的新冠肺炎CT图像感染区域分割 CSCD PKU
期刊论文 | 2023 , 42 (11) , 139-142,146 | 传感器与微系统
结合可逆网络的超高分辨率图像的风格迁移 PKU
期刊论文 | 2023 , 44 (05) , 756-760 | 半导体光电
Abstract&Keyword Cite Version(1)

Abstract :

针对处理超高分辨率图像时面临的内存成本和风格迁移过程中过度风格化,提出了一种结合可逆网络的超高分辨率图像的风格迁移方法。该算法采用可逆的Glow模块作为基本单元构建可逆神经网络模块,并将图像分为小块处理;在风格迁移模块中使用具有通道注意力机制的残差模块和缩略图实例化归一化模块(TIN),以保证各模块风格一致;提出基于全局-局部的损失计算方式,能够有效地处理局部的结构特征。实验结果表明,相较于当前通用的各种神经风格迁移网络,所提算法不仅能够避免图像在编码和解码过程中的信息丢失问题,而且能以更低的内存成本实现更优的风格迁移。

Keyword :

Glow模块 Glow模块 可逆网络 可逆网络 超高分辨率图像 超高分辨率图像 通道注意力机制 通道注意力机制 风格迁移 风格迁移

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 林真 , 郑茜颖 . 结合可逆网络的超高分辨率图像的风格迁移 [J]. | 半导体光电 , 2023 , 44 (05) : 756-760 .
MLA 林真 et al. "结合可逆网络的超高分辨率图像的风格迁移" . | 半导体光电 44 . 05 (2023) : 756-760 .
APA 林真 , 郑茜颖 . 结合可逆网络的超高分辨率图像的风格迁移 . | 半导体光电 , 2023 , 44 (05) , 756-760 .
Export to NoteExpress RIS BibTex

Version :

结合可逆网络的超高分辨率图像的风格迁移 PKU
期刊论文 | 2023 , 44 (5) , 756-760 | 半导体光电
变分自动编码器的潜变量空间解耦方法 PKU
期刊论文 | 2022 , 50 (03) , 337-344 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(2)

Abstract :

针对潜变量空间解耦具有可选择性地调整数据属性,实现更可控的数据生成的特性,提出一种提高解耦任务度量指标的方法.该方法在编码器阶段,运用自注意力机制和残差网络,使模型更有效地捕捉长期依赖关系,增强模型的维度适应性.在训练阶段,提出新颖损失函数使潜变量空间编码维度与属性值趋向单调关系,从而更好地调节损失函数所处区间范围,达到优化目的.通过对比实验表明,本模型和方法在图像的潜变量空间解耦生成上优于变分自编码机(variational auto encoder, VAE)及属性正则化(AR-VAE)模型模型,且具有更为轻量级的网络架构.

Keyword :

变分自动编码器(VAE) 变分自动编码器(VAE) 图像 图像 残差网络 残差网络 自注意力机制 自注意力机制 解耦 解耦

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 曾青耀 , 郑茜颖 , 俞金玲 . 变分自动编码器的潜变量空间解耦方法 [J]. | 福州大学学报(自然科学版) , 2022 , 50 (03) : 337-344 .
MLA 曾青耀 et al. "变分自动编码器的潜变量空间解耦方法" . | 福州大学学报(自然科学版) 50 . 03 (2022) : 337-344 .
APA 曾青耀 , 郑茜颖 , 俞金玲 . 变分自动编码器的潜变量空间解耦方法 . | 福州大学学报(自然科学版) , 2022 , 50 (03) , 337-344 .
Export to NoteExpress RIS BibTex

Version :

变分自动编码器的潜变量空间解耦方法 PKU
期刊论文 | 2022 , 50 (3) , 337-344 | 福州大学学报(自然科学版)
变分自动编码器的潜变量空间解耦方法 PKU
期刊论文 | 2022 , 50 (03) , 337-344 | 福州大学学报(自然科学版)
10| 20| 50 per page
< Page ,Total 6 >

Export

Results:

Selected

to

Format:
Online/Total:155/7236761
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1