• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:刘勇进

Refining:

Type

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 2 >
A Semismooth Newton-Based Augmented Lagrangian Algorithm for the Generalized Convex Nearly Isotonic Regression Problem SCIE
期刊论文 | 2025 , 13 (3) | MATHEMATICS
Abstract&Keyword Cite Version(1)

Abstract :

The generalized convex nearly isotonic regression problem addresses a least squares regression model that incorporates both sparsity and monotonicity constraints on the regression coefficients. In this paper, we introduce an efficient semismooth Newton-based augmented Lagrangian (Ssnal) algorithm to solve this problem. We demonstrate that, under reasonable assumptions, the Ssnal algorithm achieves global convergence and exhibits a linear convergence rate. Computationally, we derive the generalized Jacobian matrix associated with the proximal mapping of the generalized convex nearly isotonic regression regularizer and leverage the second-order sparsity when applying the semismooth Newton method to the subproblems in the Ssnal algorithm. Numerical experiments conducted on both synthetic and real datasets clearly demonstrate that our algorithm significantly outperforms first-order methods in terms of efficiency and robustness.

Keyword :

augmented Lagrangian algorithm augmented Lagrangian algorithm generalized convex nearly isotonic regression generalized convex nearly isotonic regression semismooth Newton method semismooth Newton method

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xu, Yanmei , Lin, Lanyu , Liu, Yong-Jin . A Semismooth Newton-Based Augmented Lagrangian Algorithm for the Generalized Convex Nearly Isotonic Regression Problem [J]. | MATHEMATICS , 2025 , 13 (3) .
MLA Xu, Yanmei 等. "A Semismooth Newton-Based Augmented Lagrangian Algorithm for the Generalized Convex Nearly Isotonic Regression Problem" . | MATHEMATICS 13 . 3 (2025) .
APA Xu, Yanmei , Lin, Lanyu , Liu, Yong-Jin . A Semismooth Newton-Based Augmented Lagrangian Algorithm for the Generalized Convex Nearly Isotonic Regression Problem . | MATHEMATICS , 2025 , 13 (3) .
Export to NoteExpress RIS BibTex

Version :

A Semismooth Newton-Based Augmented Lagrangian Algorithm for the Generalized Convex Nearly Isotonic Regression Problem Scopus
期刊论文 | 2025 , 13 (3) | Mathematics
Accelerated stochastic alternating mirror descent ascent algorithm for nonconvex-strongly concave minimax problems SCIE
期刊论文 | 2025 | JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
Abstract&Keyword Cite Version(1)

Abstract :

Nonconvex minimax problems frequently arise in machine learning, distributionally robust optimization, and many other research fields. In this paper, we propose a Stochastic Alternating Mirror Descent Ascent with Momentum (SAMDAM) algorithm to solve nonconvex-strongly concave minimax optimization problems. SAMDAM employs simple mirror descent ascent steps along with momentum acceleration to update the variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} alternately at each iteration. We further prove that SAMDAM achieves a gradient complexity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(\kappa<^>{3}\epsilon<^>{-4})$$\end{document} for finding an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-stationary point in stochastic nonconvex settings, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} represents the condition number of the problem. Finally, computational experiments demonstrate that SAMDAM outperforms several state-of-the-art algorithms in distributionally robust optimization and fair classification tasks.

Keyword :

Complexity Complexity Machine learning Machine learning Nonconvex minimax optimization problem Nonconvex minimax optimization problem Stochastic alternating mirror descent ascent with momentum algorithm Stochastic alternating mirror descent ascent with momentum algorithm

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhao, Lulu , Liu, Yue , Liu, Yong-Jin . Accelerated stochastic alternating mirror descent ascent algorithm for nonconvex-strongly concave minimax problems [J]. | JOURNAL OF APPLIED MATHEMATICS AND COMPUTING , 2025 .
MLA Zhao, Lulu 等. "Accelerated stochastic alternating mirror descent ascent algorithm for nonconvex-strongly concave minimax problems" . | JOURNAL OF APPLIED MATHEMATICS AND COMPUTING (2025) .
APA Zhao, Lulu , Liu, Yue , Liu, Yong-Jin . Accelerated stochastic alternating mirror descent ascent algorithm for nonconvex-strongly concave minimax problems . | JOURNAL OF APPLIED MATHEMATICS AND COMPUTING , 2025 .
Export to NoteExpress RIS BibTex

Version :

Accelerated stochastic alternating mirror descent ascent algorithm for nonconvex-strongly concave minimax problems Scopus
期刊论文 | 2025 | Journal of Applied Mathematics and Computing
A semismooth Newton based augmented Lagrangian algorithm for Lovász theta SDP problem SCIE
期刊论文 | 2025 | OPTIMIZATION
Abstract&Keyword Cite

Abstract :

Lov & aacute;sz theta SDP problem can often be regarded as semidefinite programming (SDP) relaxation of combinatorial optimization problems in graph theory and appears in various fields. In this paper, we study a semismooth Newton based augmented Lagrangian (Ssnal) algorithm for solving Lov & aacute;sz theta SDP problem. There are three major ingredients in this paper. Firstly, we design efficient implementations of the Ssnal algorithm for solving dual problem of Lov & aacute;sz theta SDP problem. Secondly, the global convergence and local asymptotic superlinear convergence of the Ssnal algorithm are characterized under very mild conditions, in which a semismooth Newton (Ssn) method with superlinear or even quadratic convergence is applied to solve the subproblem. Finally, numerical experiments conducted on random and real data sets demonstrate that the Ssnal algorithm outperforms Sdpnal+ solver. In particular, the Ssnal algorithm can efficiently solve large-scale Lov & aacute;sz theta SDP problems with high accuracy, where the matrix dimension is up to 3000 and the number of equality constraints is up to 27,484.

Keyword :

augmented Lagrangian method augmented Lagrangian method Lov & aacute;sz theta SDP problem Lov & aacute;sz theta SDP problem semidefinite programming semidefinite programming semismooth Newton method semismooth Newton method

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Chen, Suyu , Liu, Yong-Jin , Yu, Jing et al. A semismooth Newton based augmented Lagrangian algorithm for Lovász theta SDP problem [J]. | OPTIMIZATION , 2025 .
MLA Chen, Suyu et al. "A semismooth Newton based augmented Lagrangian algorithm for Lovász theta SDP problem" . | OPTIMIZATION (2025) .
APA Chen, Suyu , Liu, Yong-Jin , Yu, Jing , Zhou, Weimi . A semismooth Newton based augmented Lagrangian algorithm for Lovász theta SDP problem . | OPTIMIZATION , 2025 .
Export to NoteExpress RIS BibTex

Version :

CAMIL: channel attention-based multiple instance learning for whole slide image classification SCIE
期刊论文 | 2025 , 41 (2) | BIOINFORMATICS
Abstract&Keyword Cite Version(1)

Abstract :

Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.Results To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics.Availability and implementation All implementation code is available at https://github.com/maojy0914/CAMIL.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Mao, Jinyang , Xu, Junlin , Tang, Xianfang et al. CAMIL: channel attention-based multiple instance learning for whole slide image classification [J]. | BIOINFORMATICS , 2025 , 41 (2) .
MLA Mao, Jinyang et al. "CAMIL: channel attention-based multiple instance learning for whole slide image classification" . | BIOINFORMATICS 41 . 2 (2025) .
APA Mao, Jinyang , Xu, Junlin , Tang, Xianfang , Liu, Yongjin , Zhao, Heaven , Tian, Geng et al. CAMIL: channel attention-based multiple instance learning for whole slide image classification . | BIOINFORMATICS , 2025 , 41 (2) .
Export to NoteExpress RIS BibTex

Version :

CAMIL: channel attention-based multiple instance learning for whole slide image classification Scopus
期刊论文 | 2025 , 41 (2) | Bioinformatics
基于依附惩罚的稀疏最优评分模型
期刊论文 | 2024 , 44 (4) , 100-115 | 数学理论与应用
Abstract&Keyword Cite

Abstract :

我们考虑在高维环境下的二分类问题,其中给定数据的特征数大于观测数.为此,我们提出一种基于依附惩罚的最优评分(APOS)模型,用于同时进行判别分析和特征选择.在本文中,我们设计一种基于块坐标下降(BCD)方法和SSNAL算法的高效算法来近似求解APOS模型,并给出该方法的收敛性结果.对模拟和真实数据集的数值实验结果表明,所提模型在性能上优于五种经典的稀疏判别方法.

Keyword :

BCD方法 BCD方法 SSNAL算法 SSNAL算法 最优评分 最优评分 特征选择 特征选择 稀疏判别分析 稀疏判别分析

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 侯丹丹 , 刘勇进 . 基于依附惩罚的稀疏最优评分模型 [J]. | 数学理论与应用 , 2024 , 44 (4) : 100-115 .
MLA 侯丹丹 et al. "基于依附惩罚的稀疏最优评分模型" . | 数学理论与应用 44 . 4 (2024) : 100-115 .
APA 侯丹丹 , 刘勇进 . 基于依附惩罚的稀疏最优评分模型 . | 数学理论与应用 , 2024 , 44 (4) , 100-115 .
Export to NoteExpress RIS BibTex

Version :

An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem SCIE
期刊论文 | 2024 , 475 | APPLIED MATHEMATICS AND COMPUTATION
WoS CC Cited Count: 10
Abstract&Keyword Cite Version(2)

Abstract :

The Fantope-constrained sparse principal subspace estimation problem is initially proposed Vu et al. (Vu et al., 2013). This paper investigates a semismooth Newton based proximal point (P PASSN ) algorithm for solving the equivalent form of this problem, where a semismooth Newton (S SN ) method is utilized to optimize the inner problems involved in the P PASSN algorithm. Under standard conditions, the P PASSN algorithm is proven to achieve global convergence and asymptotic superlinear convergence rate. Computationally, we derive nontrivial expressions the Fantope projection and its generalized Jacobian, which are key ingredients for the P PASSN algorithm. Some numerical results on synthetic and real data sets are presented to illustrate the effectiveness of the proposed P PASSN algorithm for large-scale problems and superiority over the alternating direction method of multipliers (ADMM).

Keyword :

Fantope projection Fantope projection Generalized Jacobian Generalized Jacobian Proximal point algorithm Proximal point algorithm Semismooth Newton algorithm Semismooth Newton algorithm

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Yong-Jin , Wan, Yuqi , Lin, Lanyu . An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem [J]. | APPLIED MATHEMATICS AND COMPUTATION , 2024 , 475 .
MLA Liu, Yong-Jin et al. "An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem" . | APPLIED MATHEMATICS AND COMPUTATION 475 (2024) .
APA Liu, Yong-Jin , Wan, Yuqi , Lin, Lanyu . An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem . | APPLIED MATHEMATICS AND COMPUTATION , 2024 , 475 .
Export to NoteExpress RIS BibTex

Version :

An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem Scopus
期刊论文 | 2024 , 475 | Applied Mathematics and Computation
An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem EI
期刊论文 | 2024 , 475 | Applied Mathematics and Computation
基于依附惩罚的稀疏最优评分模型(英文)
期刊论文 | 2024 , 44 (04) , 100-115 | 数学理论与应用
Abstract&Keyword Cite

Abstract :

我们考虑在高维环境下的二分类问题,其中给定数据的特征数大于观测数.为此,我们提出一种基于依附惩罚的最优评分(APOS)模型,用于同时进行判别分析和特征选择.在本文中,我们设计一种基于块坐标下降(BCD)方法和SSNAL算法的高效算法来近似求解APOS模型,并给出该方法的收敛性结果.对模拟和真实数据集的数值实验结果表明,所提模型在性能上优于五种经典的稀疏判别方法.

Keyword :

BCD方法 BCD方法 SSNAL算法 SSNAL算法 最优评分 最优评分 特征选择 特征选择 稀疏判别分析 稀疏判别分析

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 侯丹丹 , 刘勇进 . 基于依附惩罚的稀疏最优评分模型(英文) [J]. | 数学理论与应用 , 2024 , 44 (04) : 100-115 .
MLA 侯丹丹 et al. "基于依附惩罚的稀疏最优评分模型(英文)" . | 数学理论与应用 44 . 04 (2024) : 100-115 .
APA 侯丹丹 , 刘勇进 . 基于依附惩罚的稀疏最优评分模型(英文) . | 数学理论与应用 , 2024 , 44 (04) , 100-115 .
Export to NoteExpress RIS BibTex

Version :

An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems SCIE
期刊论文 | 2023 , 41 (03) | ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH
Abstract&Keyword Cite Version(2)

Abstract :

This paper is concerned with the l(1),infinity-norm ball constrained multi-task learning problem, which has received extensive attention in many research areas such as machine learning, cognitive neuroscience, and signal processing. To address the challenges of solving large-scale multi-task Lasso problems, this paper develops an inexact semismooth Newton-based augmented Lagrangian (Ssnal) algorithm. When solving the inner problems in the Ssnal algorithm, the semismooth Newton (Ssn) algorithm with superlinear or even quadratic convergence is applied. Theoretically, this paper presents the global and asymptotically superlinear local convergence of the Ssnal algorithm under standard conditions. Computationally, we derive an efficient procedure to construct the generalized Jacobian of the projector onto l(1),infinity-norm ball, which is an important component of the Ssnal algorithm, making the computational cost in the Ssn algorithm very cheap. Comprehensive numerical experiments on the multi-task Lasso problems demonstrate that the Ssnal algorithm is more efficient and robust than several existing state-of-the-art first-order algorithms.

Keyword :

augmented Lagrangian algorithm augmented Lagrangian algorithm generalized Jacobian generalized Jacobian Multi-task Lasso problem Multi-task Lasso problem semismooth Newton algorithm semismooth Newton algorithm

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Lin, Lanyu , Liu, Yong-Jin . An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems [J]. | ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH , 2023 , 41 (03) .
MLA Lin, Lanyu et al. "An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems" . | ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH 41 . 03 (2023) .
APA Lin, Lanyu , Liu, Yong-Jin . An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems . | ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH , 2023 , 41 (03) .
Export to NoteExpress RIS BibTex

Version :

An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems EI
期刊论文 | 2024 , 41 (3) | Asia-Pacific Journal of Operational Research
An Inexact Semismooth Newton-Based Augmented Lagrangian Algorithm for Multi-Task Lasso Problems Scopus
期刊论文 | 2023 , 41 (3) | Asia-Pacific Journal of Operational Research
超平面交单调锥上投影算子的快速算法及其实现 PKU
期刊论文 | 2023 , 51 (3) , 293-300 | 福州大学学报(自然科学版)
Abstract&Keyword Cite Version(2)

Abstract :

研究超平面交单调锥上的投影问题,给出求解该问题的池相邻违反算法和半光滑牛顿法,并对算法进行有效性分析,最后将两种算法进行数值对比.数值实验结果表明:在求解随机数据集上的投影问题时,池相邻违反算法比目前流行的半光滑牛顿算法更高效.

Keyword :

半光滑牛顿法 半光滑牛顿法 投影算子 投影算子 池相邻违反算法 池相邻违反算法 超平面交单调锥 超平面交单调锥

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 刘勇进 , 汤婉红 . 超平面交单调锥上投影算子的快速算法及其实现 [J]. | 福州大学学报(自然科学版) , 2023 , 51 (3) : 293-300 .
MLA 刘勇进 et al. "超平面交单调锥上投影算子的快速算法及其实现" . | 福州大学学报(自然科学版) 51 . 3 (2023) : 293-300 .
APA 刘勇进 , 汤婉红 . 超平面交单调锥上投影算子的快速算法及其实现 . | 福州大学学报(自然科学版) , 2023 , 51 (3) , 293-300 .
Export to NoteExpress RIS BibTex

Version :

超平面交单调锥上投影算子的快速算法及其实现 PKU
期刊论文 | 2023 , 51 (03) , 293-300 | 福州大学学报(自然科学版)
超平面交单调锥上投影算子的快速算法及其实现 PKU
期刊论文 | 2023 , 51 (03) , 293-300 | 福州大学学报(自然科学版)
A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem SCIE
期刊论文 | 2023 , 85 (2) , 547-582 | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
WoS CC Cited Count: 2
Abstract&Keyword Cite Version(2)

Abstract :

The maximum eigenvalue problem is to minimize the maximum eigenvalue function over an affine subspace in a symmetric matrix space, which has many applications in structural engineering, such as combinatorial optimization, control theory and structural design. Based on classical analysis of proximal point (Ppa) algorithm and semismooth analysis of nonseparable spectral operator, we propose an efficient semismooth Newton based dual proximal point (Ssndppa) algorithm to solve the maximum eigenvalue problem, in which an inexact semismooth Newton (Ssn) algorithm is applied to solve inner subproblem of the dual proximal point (d-Ppa) algorithm. Global convergence and locally asymptotically superlinear convergence of the d-Ppa algorithm are established under very mild conditions, and fast superlinear or even quadratic convergence of the Ssn algorithm is obtained when the primal constraint nondegeneracy condition holds for the inner subproblem. Computational costs of the Ssn algorithm for solving the inner subproblem can be reduced by fully exploiting low-rank or high-rank property of a matrix. Numerical experiments on max-cut problems and randomly generated maximum eigenvalue optimization problems demonstrate that the Ssndppa algorithm substantially outperforms the Sdpnal+ solver and several state-of-the-art first-order algorithms.

Keyword :

Density matrix Density matrix Maximum eigenvalue problem Maximum eigenvalue problem Proximal point algorithm Proximal point algorithm Quadratic growth condition Quadratic growth condition Semismooth Newton algorithm Semismooth Newton algorithm

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Yong-Jin , Yu, Jing . A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem [J]. | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS , 2023 , 85 (2) : 547-582 .
MLA Liu, Yong-Jin et al. "A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem" . | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 85 . 2 (2023) : 547-582 .
APA Liu, Yong-Jin , Yu, Jing . A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem . | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS , 2023 , 85 (2) , 547-582 .
Export to NoteExpress RIS BibTex

Version :

A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem EI
期刊论文 | 2023 , 85 (2) , 547-582 | Computational Optimization and Applications
A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem Scopus
期刊论文 | 2023 , 85 (2) , 547-582 | Computational Optimization and Applications
10| 20| 50 per page
< Page ,Total 2 >

Export

Results:

Selected

to

Format:
Online/Total:1539/13863031
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1