Indexed by:
Abstract:
Exploiting solar energy to photocatalyze integrated selective conversion of bioethanol into fine chemicals and hydrogen (H-2) is a promising avenue in response to current energy and environmental crises. Herein, we have reported the mild synthesis of a binary heterostructure of CdS-Ti3C2Tx MXene (CdS-MX) combining one-dimensional (1D) CdS nanowires (NWs) with two-dimensional (2D) MXene structure, and its application in photocatalytic coupling redox reaction of H-2 evolution and selective conversion of bioethanol into 1,1-diethoxyethane (DEE) under acidic conditions. The results reveal that the synergistic effect of the intimate interfacial contact and matched energy level alignment between electrically conducive 2D MXene and semiconductor 1D CdS NWs benefits the separation and migration of charge carriers. Furthermore, (CH)-C-center dot(OH)CH3 has been proven to be the pivotal radical intermediate during photoredox process. This work is anticipated to stimulate further interest on rational construction of MXene-semiconductor based composites toward photoredox coupling organic synthesis and H-2 evolution in a sustainable manner.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2020
Volume: 269
1 9 . 5 0 3
JCR@2020
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 151
SCOPUS Cited Count: 167
ESI Highly Cited Papers on the List: 18 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: