Indexed by:
Abstract:
Seismic capacity, including the ultimate load-carrying capacity and ultimate deformation capacity of precast segmental concrete double-column (PSCDC) piers with steel sleeve (SS) connection or grouted corrugated-metal duct (GCMD) connection, has been verified to be similar to those of cast-in-place (CIP) piers by quasi-static tests. However, the lack of knowledge of seismic response characteristics and damage process of PSCDC piers has limited their application in high-intensity seismic areas. Therefore, shake table tests, using variable types and intensities of seismic ground motions, were performed to investigate the seismic behavior of connection joints and to evaluate the seismic performance of PSCDC piers with SS and GCMD connections. Also, a finite element analysis (FEA) model was developed to study the influence of design parameters on the seismic behavior of the piers. The results showed that the main damage in PSCDC piers was caused by the cyclic opening and closing of connection joints. Under high-intensity ground motions, the PSCDC piers had a lower seismic performance than the CIP piers due to a significant decrease of their integrity and stiffness. The seismic performance of PSCDC piers is comparable to CIP piers when using an appropriate initial stress of the prestressing tendons.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
ISSN: 1671-3664
CN: 23-1496/P
Year: 2020
Issue: 3
Volume: 19
Page: 705-723
2 . 1 3 8
JCR@2020
2 . 6 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:3
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: