Indexed by:
Abstract:
An irreversible model of the thermophotonic cell (TPC) with a heated forward-based light-emitting diode (LED) as an emitter and a photovoltaic cell (PVC) is established. The performances of the TPC are optimized and compared with those of the thermophotovoltaic cell (TPVC) based on finite-time thermodynamics. The results obtained show that there exist the optimally operating ranges of the voltages and band-gap energies of the LED and PVC. The thermal flow emitted from the heated LED dramatically exceeds that from the pure thermal emitter. The maximum efficiency of the TPC is less than that of the TPVC, whereas the maximum power density of the TPC surpasses that of the TPVC under an arbitrary emitter temperature. The TPC has the advantages of the relatively high optimal band-gap energies and relatively low-operating temperatures so that it is easier to be made than the TPVC.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON ELECTRON DEVICES
ISSN: 0018-9383
Year: 2020
Issue: 6
Volume: 67
Page: 2376-2380
2 . 9 1 7
JCR@2020
2 . 9 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: