• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhong, Ruipeng (Zhong, Ruipeng.) [1] | Hong, Ruoyu (Hong, Ruoyu.) [2] (Scholars:洪若瑜)

Indexed by:

EI Scopus SCIE

Abstract:

Environmental-friendly, rapid, and continuous preparation process of few-layer graphene has been developed by alternative-current (AC) rotating gliding arc plasma, which contains the characteristics of equilibrium plasma and non-equilibrium plasma. In the process, methane was directly cracked in the plasma and then graphene sheets were generated. The effects of hydrogen and gas flow rate on the yield, size, morphology and structure of graphene have been investigated. In addition, the formation mechanism of graphene was also revealed by using the reactive molecular dynamic method. The simulation results showed that the growth process of graphene clusters by methane radicals includes three stages: elongation of the carbon chains, cyclization of the carbon chains, and condensation and sheeting of clusters. The carbon source concentration influences the graphene clusters. Increasing the carbon source concentration was found to enlarge the size of graphene clusters but are more prone to curling and closing. The formation of C-H bonds can reduce the peripheral dangling bonds of the clusters, thereby delaying the closure of the clusters. It laid a foundation for understanding the growth mechanism of graphene.

Keyword:

Arc plasma Graphene Mechanism Reactive molecular dynamics

Community:

  • [ 1 ] [Zhong, Ruipeng]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China
  • [ 2 ] [Hong, Ruoyu]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • 洪若瑜

    [Hong, Ruoyu]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China

Show more details

Related Keywords:

Source :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

Year: 2020

Volume: 387

1 3 . 2 7 3

JCR@2020

1 3 . 4 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:132

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 37

SCOPUS Cited Count: 36

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:315/10344836
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1