Indexed by:
Abstract:
Background: The realization of multifunction in one bulk material is fascinating for developing a new generation of devices. Quaternary phosphorus salts were seldom utilized as templates in haloargentate systems, and the hybridization of alkyl(triphenyl)phosphonium with halometallate will be a good strategy for the development of multifunctional material, especially for biological material. Methods: Under the template of (triphenyl)phosphonium-based quaternary phosphorus salts with different spacer lengths (n=2, 3, 4), three bromoargentate hybrids were constructed via the solution method, ie, (1,2-DBTPP)(Ag2Br4) (1), {(1,3-DBTPP)(2)(Ag7Br11)]center dot CH3CN center dot H2O}(n), (2), and [(1,4-DBTPP)(Ag5Br7)](CH3CN)(2)center dot H2O}(n), (3) (1,2-DBTPP2+=ethane-1,2-diylbis (triphenyl)phosphonium, 1,3-DBTPP2+=propane-1,3-diylbis (triphenyl)phosphonium, 1,4-DBTPP2+ =butane-1,4-diylbis (triphenyl)phosphonium)). Results: The (Ag7Br11)(n)(4n-) chain in 2 is a new type of 1-D bromoargentate chain constructed from cubane-like Ag4Br4 nodes, AgBr4 tetrahedrons and AgBr3 triangles. Interestingly, by elongating spacer n from 2 to 4, argentophilicity interactions are weakened, and the hydrogen bonds are strengthened. Consequently, their water stabilities and photocurrents are improved, in which the Ag-4d/Br-4p to pi* anti-bonding orbital of the quaternary phosphorus transfer is facilitated. Furthermore, the greenish blue emissions can be detected. Finally, high inhabitation rates against Streptococcus mutans and Candida albicans can be observed in 2 and 3. Conclusion: In all experiments, by elongating the spacer lengths of quaternary phosphorus salts, multifunctions were integrated in the quaternary phosphorus/bromoargentate hybrids, including greenish blue luminescence, repeatable photocurrent responses and durable antimicrobial activities with enhanced water stability. This work could provide a theoretical guide for the design of new biologically multifunctional materials.
Keyword:
Reprint 's Address:
Version:
Source :
INTERNATIONAL JOURNAL OF NANOMEDICINE
ISSN: 1178-2013
Year: 2020
Volume: 15
Page: 6225-6237
6 . 4
JCR@2020
6 . 7 0 0
JCR@2023
ESI Discipline: PHARMACOLOGY & TOXICOLOGY;
ESI HC Threshold:120
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: