• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Guo, Zhan (Guo, Zhan.) [1] | Huang, Chenxiang (Huang, Chenxiang.) [2] | Chen, Yu (Chen, Yu.) [3] (Scholars:陈誉)

Indexed by:

EI Scopus SCIE

Abstract:

The photocatalytic mixed crystal nano-TiO2 particles were incorporated with concrete by means of the internal doping method (IDM) and spraying method (SPM) in this paper. To evaluate the photocatalytic degradation efficiency of mixed crystal nano-TiO2 concrete, the methyl orange (MO) was chosen to simulate pollutants. The physicochemical characteristics and photocatalytic performance of mixed crystal nano-TiO2 concrete prepared by above two different methods were experimentally investigated under UV irradiation and solar irradiation. Furthermore, the effects of two key influential factors including pollutant concentration and irradiation condition were also analyzed and discussed. Experimental results indicate that the nano-TiO2 concrete prepared by the spraying method (S PM) exhibits maximum photocatalytic degradation efficiency of 73.82% when the sprayed nano-TiO2 slurry concentration is 10mg/L. The photocatalytic degradation efficiency of unpolished nano-TiO2 concrete is much higher than that of polished nano-TiO2 concrete under the same exposure time of UV irradiation. Moreover, the photocatalytic degradation efficiency of nano-TiO2 concrete decreases with the increase of pollutant concentration. The irradiation condition has an obvious influence on the photocatalytic degradation efficiency of nano-TiO2 concrete. In the aspect of applications, the practical recommendations for the nano-TiO2 concrete with self-cleaning capacity were presented according to the experimental results.

Keyword:

irradiation condition mixed crystal nano-TiO2 concrete photocatalytic degradation efficiency pollutant concentration X-ray diffraction

Community:

  • [ 1 ] [Guo, Zhan]Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
  • [ 2 ] [Huang, Chenxiang]Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
  • [ 3 ] [Chen, Yu]Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China

Reprint 's Address:

  • 陈誉

    [Chen, Yu]Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China

Show more details

Related Keywords:

Source :

NANOTECHNOLOGY REVIEWS

ISSN: 2191-9089

Year: 2020

Issue: 1

Volume: 9

Page: 219-229

7 . 8 4 8

JCR@2020

6 . 1 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:196

JCR Journal Grade:1

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 36

SCOPUS Cited Count: 35

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:164/10050497
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1