Indexed by:
Abstract:
It is imperative to remove organicarsenic acids (OAAs) from water because they can convert into highly toxic inorganic arsenic compounds in natural environment via biotic and abiotic degradation routes. Herein, seven Zr-based metal-organic frameworks (Zr-MOFs) including DUT-67, UiO-66, UiO-67, MOF-808, MOF-808F, NU-1000, NU-1000B with various structures were screened for the adsorptive removal of representative OAAs including parsanilic acid (ASA) and roxarsone (ROX) in water media. Initial screening found that MOF-808 and MOF-808F have the largest adsorption capacities. Therefore, their adsorption behaviors including adsorption kinetics, isotherms, specificity and effects of pH were fully investigated. Remarkably, MOF-808F had the second largest maximum adsorption capacities of ASA (621.1 mg g(-1)) and ROX (709.2 mg g(-1)) among the reported MOF-based adsorbents. In addition, MOF-808F showed excellent selectivity and reusability and no observable drop of adsorption efficiency was found in the presence of equimolar competing ions (Cl-, OAc- or SO42-) or after three successive adsorptive runs. By contrast, MOF-808 had inferior adsorption specificity and reusability in spite of the very similar structure with MOF-808F. The structure-dependent adsorption performances can be explained by the distinct adsorptive mechanisms, which were revealed by zeta potential measurements, X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation etc. The dominant interaction between MOF-808 and ASA was coordination interactions, while ASA adsorption over MOF-808F was governed by the synergistic effect of p-p stacking, hydrogen bonding, and electrostatic interactions. This work no only presented an excellent adsorbent (MOF-808F) toward OAAs, but also revealed the structure dependent adsorption performances/mechanisms.
Keyword:
Reprint 's Address:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2019
Volume: 378
1 0 . 6 5 2
JCR@2019
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:150
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 87
SCOPUS Cited Count: 100
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: