Indexed by:
Abstract:
An efficient MoO2/CdS photocatalyst has been successfully constructed by a relatively facile way to construct a specific combination mode through chemical bond, which results in strong interaction between MoO2 nanoparticles and CdS nanorods. X-ray photoelectron spectroscopy further confirms the formation of Mo-S bonding, which acts as a connection bridge and develops an intimate contact between CdS-NRs and MoO2 nanoparticles. Benefitting from the synergic effect of the enhancement on the light absorption, carriers' efficient separation and lower the overpotential of hydrogen evolution, the obtained MoO2/CdS composite has shown an excellent enhancement in photocatalytic H-2 generation and the optimal H-2 evolution rate reaches as high as 30 times than that of pure CdS nanorods. We have experimentally shed light on the mechanism of this excellent enhancement performance in detail. Moreover, our work can broaden the construction and the application of developing other efficient photocatalytic material containing transition metal oxide. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
ISSN: 0360-3199
Year: 2019
Issue: 44
Volume: 44
Page: 24228-24236
4 . 9 3 9
JCR@2019
8 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:150
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: