Indexed by:
Abstract:
Hierarchical SnO2/TiO2 composite hollow microspheres were synthesized via one-step hydrothermal route by using titanium tetrabutoxide as titanium source and potassium stannate and tripolycyanamide as co-additive, and the samples were characterized by XRD, BET, SEM and TEM measurements. The results denoted that the synthesized microspheres with a diameter of ca 500-1000 nm were assembled by thin nanosheets and possessed a large surface area of 199.3 m(2) g(-1). In addition, EDX and element mapping measurements indicated that a small amount of SnO2 nanoparticles uniformly distributed among the nanosheets of microspheres. The hierarchical microspheres simultaneously facilitated dye adsorption, light harvesting, and electron transport, giving rise to a high photovoltaic conversion efficiency of 8.70% when applied as scattering layer for dye-sensitized solar cells, which was a 28.1% improvement compared to that of bare nanocrystalline TiO2 (6.79%, Dyesol) based cell. (C) 2018 Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ELECTROCHIMICA ACTA
ISSN: 0013-4686
Year: 2019
Volume: 296
Page: 142-148
6 . 2 1 5
JCR@2019
5 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 29
SCOPUS Cited Count: 29
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: