• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Yi, Xiaofeng (Yi, Xiaofeng.) [1] | Yang, Meixia (Yang, Meixia.) [2] | Mo, Liuda (Mo, Liuda.) [3] | Xu, Wenkai (Xu, Wenkai.) [4] | Wang, Shuai (Wang, Shuai.) [5] | He, Jiarui (He, Jiarui.) [6] | Gu, Junjie (Gu, Junjie.) [7] | Ou, Minrui (Ou, Minrui.) [8] (Scholars:欧敏锐) | Xu, Xiaoping (Xu, Xiaoping.) [9] (Scholars:许小平)

Indexed by:

Scopus SCIE

Abstract:

Copper in drinking water causes a significant environmental problem. Composite material based on alginate hydrogel has been gaining attention in the field of Cu(II) adsorption. However, alginate-based hydrogel exhibits poor mechanical property and relative low adsorption capacity which limit their application. The present study is devoted to the modification of chitosan/calcium alginate/Fe3O4 (CAF) hydrogel microsphere by NaOH solution for enhancement of Cu(II) adsorption. Results reveal that modification of CAF via NaOH solution significantly improves the mechanical strength and Cu2+ adsorption capacity of pristine materials. FTIR and XRD analysis confirms that CAF and newly prepared materials (NACAF) are successfully prepared. SEM and EDX are employed to analyze the surface morphology and elemental composition, respectively, both before and after their loading with Cu2+. XPS study demonstrates adsorption mechanism is based on chelation and ion-exchange. Compressive stress-strain curves demonstrate NACAF has better mechanical performance than CAF. The adsorption kinetics of the two adsorbents follow a pseudo-second-order model. The equilibrium data were best described by Langmuir isotherm model, and the estimated maximum equilibrium sorption capacity, q(m),is 261.31 mg/g for the NACAF, which is larger than that of CAF (145.39 mg/g). Hence, NACAF shows excellent mechanical strength and high sorption capacity for Cu2+. It has great potential for Cu(II) removal in aqueous solutions.

Keyword:

Calcium alginate Chitosan Copper Fe3O4 NaOH

Community:

  • [ 1 ] [Yi, Xiaofeng]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 2 ] [Yang, Meixia]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 3 ] [Mo, Liuda]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 4 ] [Wang, Shuai]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 5 ] [He, Jiarui]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 6 ] [Gu, Junjie]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 7 ] [Ou, Minrui]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 8 ] [Xu, Xiaoping]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
  • [ 9 ] [Xu, Wenkai]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Fujian, Peoples R China

Reprint 's Address:

  • 伊晓峰 许小平

    [Yi, Xiaofeng]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China;;[Xu, Xiaoping]Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH

ISSN: 0944-1344

Year: 2018

Issue: 4

Volume: 25

Page: 3922-3932

2 . 9 1 4

JCR@2018

0 . 0 0 0

JCR@2023

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:222

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 19

SCOPUS Cited Count: 21

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:181/10019453
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1