Indexed by:
Abstract:
Chirality is one of the essential features in our living life and exerts a wide variety of applications in enantio-adsorption/separation. However, the mechanism between chirality and enantio-adsorption/separation is very significant in homochiral porous materials; in particular, the understanding of the relationship between crystalline orientations and chiral behavior is a challenging but important mechanism. In this work, homochiral porous crystalline metal organic framework (MOF) materials were grown on hydroxyl- and carboxyl-functionalized substrates, resulting in homochiral porous thin films with different orientations. The enantioselectivity and adsorption rates in two different oriented homochiral porous thin films were studied by using gas-phase quartz crystal microbalance (QCM) experiment of chiral probe molecules. The different mass uptake and time constant showed that the chiral behavior can be obviously influenced by the crystalline orientations on the same homochiral porous thin films. This study will not only offer a good model to understand the mechanism of chiral behavior in homochiral porous materials but also provide guidance for developing new homochiral-oriented porous thin films with high enantioselectivity or enantioseparation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2016
Issue: 40
Volume: 8
Page: 27332-27338
7 . 5 0 4
JCR@2016
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:324
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: