Indexed by:
Abstract:
A novel configuration of porous ZnO/Sn1-xZnxO2-x, heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. Porous Sn1-xZnxO2, was synthesized from Zn2+ and Sn4+ precursors with the Zn/Sn ratio of 2:1 in the absence of alkali, and then intermolecular dehydrolysis led to the formation of heterointerface between Sn1-xZnxO2, and ZnO. The results show that Zn2+ doping exhibits a significant influence on particle size of SnO2 leading to much higher specific surface area and larger band gap, which is in favor of the photocatalytic activity of SnO2 under UV light irradiation. In addition, the formation of ZnO/Sn1-xZnxO2 heterostructure improves the separation of photogenerated electron hole pairs due to the potential difference between Sn1-xZnxO2, and ZnO, which also benefits to photocatalysis. By taking account of them together, these results provide further insight into the synergistic effects of metal ion doping and semiconductor/semiconductor heterostructure on the activity of photocatalysts in environmental remediation applications. (C) 2013 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2014
Volume: 148
Page: 44-50
7 . 4 3 5
JCR@2014
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:268
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 27
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: