Indexed by:
Abstract:
The Bi-modified Pt nanoparticle catalysts using multi-walled carbon nanotubes as supports are prepared through microwave treatment and long-term standing approaches. Bi can easily modify Pt catalyst because of the strong affinity between Bi and Pt. However, only limited amount of Bi and uneven Bi-modified Pt catalyst are obtained through the long-term standing approach. The microwave approach can complete the synthesis rapidly and get uniform Bi-Pt/CNT catalysts. X-ray photoelectron spectroscopy shows that Bi (III) and Pt (0) species are the main form in the Bi-Pt/CNT catalyst. Cyclic voltammetry indicates that the modification of Bi on Pt/CNTs leads to an enhanced activity up to 260% compared to Pt/CNTs for ethanol electro-oxidation. The current of Bi-Pt/CNTs (0.1:1) is 44.8 times higher than that of Pt/CNTs at -0.3 V for 1800s. Linear current sweep results reveal that the electro-oxidation of residual intermediate species can be effectively promoted because the adsorption of OHad species is enhanced by the addition of Bi to Pt/CNTs, which is characterized by the higher open circuit potential. (C) 2012 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2013
Volume: 129
Page: 549-555
6 . 0 0 7
JCR@2013
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 54
SCOPUS Cited Count: 58
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: