Indexed by:
Abstract:
An enzyme-free oxalic acid (OA) electrochemical sensor was assembled using a platinum nanoparticle-loaded graphene nanosheets (PtNPGNs)-modified electrode. The PtNPGNs, with a high yield of PtNPs dispersed on the graphene nanosheets, were successfully achieved by a green, rapid, one-step and template-free method. The resulting PtNPGNs were characterized by transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and an X-ray diffraction technique. Electrochemical oxidation of OA on the PtNPGNs-modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry methods. Based on the results, the modified electrode exhibited high electrochemical activity with well-defined peaks of OA oxidation and a notably decreased overpotential compared to the bare or even the GNs-modified electrode. Under optimized conditions, a good linear response was observed for the concentration of OA and its current response was in the range of 0.1-15 mM and 15-50 mM with a detection limit (S/N = 3) of 10 mM. Furthermore, the electrochemical sensor presented good characteristics in terms of stability and reproducibility, promising the applicability of the sensor in practical analysis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NANOSCALE
ISSN: 2040-3364
Year: 2013
Issue: 13
Volume: 5
Page: 5779-5783
6 . 7 3 9
JCR@2013
5 . 8 0 0
JCR@2023
ESI Discipline: PHYSICS;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 37
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: