• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Hua, J. M. (Hua, J. M..) [1] (Scholars:华金铭) | Wei, K. M. (Wei, K. M..) [2] | Zheng, Q. (Zheng, Q..) [3] (Scholars:郑起)

Indexed by:

EI Scopus SCIE

Abstract:

The thermal desorption technique has been explored experimentally to remove mercury from the gold-loaded granule activated carbon (GAC) co-adsorbed during heap leaching of gold ores bearing mercury. The effects of treatment temperature, retention time and flow rate of steam used as purge gas on residual mercury levels were investigated. Characterization techniques such as N-2 adsorption-desorption, X-ray powder diffraction and X-ray photoelectron spectroscopy. were employed to understand how thermal treatment affects the gold elution in a caustic cyanide-free eluant from the treated GAC. The results showed that mercury desorption was strongly affected by the treatment temperature and steam flow rate. Treatment for 3 h at 550 degrees C under steam atmosphere with 0.4 m(3)/h flow rate was allowed to remove more than 99.78% mercury and the content of residual mercury in the treated GAC was decreased to 0.035 g/kg, likely reaching the thresh level of mercury extraction during gold elution in a caustic cyanide eluant. Meanwhile, activated carbon was partially regenerated, with only 4.06% weight loss of carbon, mainly due to microporosity recovery. However, it was observed that the thermal process would have heavily influenced elution of gold from the treated activated carbon in a caustic eluant without sodium cyanide. This phenomenon has been attributed primarily to the change of chemical state of gold species and accumulation of highly dispersed gold species and even formation of more stable gold nano-particles caused by a combination of promotion of high temperature and steam oxidation. The elution of gold from the treated sample could be improved through introduction of NaCN into the caustic eluant. However only 83.84% of gold was eluted, probably because the elution time was insufficient. (C) 2012 Elsevier B.V. All rights reserved.

Keyword:

Gold elution Gold-loaded GAC Mercury removal Thermal desorption

Community:

  • [ 1 ] [Hua, J. M.]Fuzhou Univ, Coll Chem & Chem Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 2 ] [Wei, K. M.]Fuzhou Univ, Coll Chem & Chem Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 3 ] [Zheng, Q.]Fuzhou Univ, Coll Chem & Chem Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 4 ] [Hua, J. M.]Zijin Min Grp Co Ltd, Zijin Res & Engn Inst Min & Met, Shanghang 364200, Fujian, Peoples R China

Reprint 's Address:

  • 华金铭

    [Hua, J. M.]Fuzhou Univ, Natl Res Ctr Chem Fertilizer Catalysts, Gongye Rd 523, Fuzhou 350002, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

HYDROMETALLURGY

ISSN: 0304-386X

Year: 2012

Volume: 117

Page: 86-92

2 . 1 6 9

JCR@2012

4 . 8 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 8

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:69/10042805
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1