• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin, R. (Lin, R..) [1] (Scholars:林然) | Liu, F. (Liu, F..) [2] | Anh, V. (Anh, V..) [3] | Turner, I. (Turner, I..) [4]

Indexed by:

EI Scopus SCIE

Abstract:

In this paper, we consider the variable-order nonlinear fractional diffusion equation partial derivative u(x, t)/partial derivative t = B(x, t)(x)R(alpha(x, t))u(x, t) + f (u, x, t), where R-x(alpha(x,t)) is a generalized Riesz fractional derivative of variable order alpha(x, t) (1 < alpha(x, t) <= 2) and the nonlinear reaction term f (u, x, t) satisfies the Lipschitz condition vertical bar f(u(1), x, t) - f(u(2), x, t)vertical bar <= L vertical bar u(1) - u(2)vertical bar. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Keyword:

Convergence Explicit difference approximation Fractional calculus Nonlinear fractional diffusion equation Stability Variable order

Community:

  • [ 1 ] [Liu, F.]Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
  • [ 2 ] [Anh, V.]Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
  • [ 3 ] [Turner, I.]Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
  • [ 4 ] [Lin, R.]Fuzhou Univ, Sch Math & Comp Sci, Fuzhou 350002, Peoples R China
  • [ 5 ] [Liu, F.]S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China

Reprint 's Address:

  • [Liu, F.]Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia

Show more details

Related Keywords:

Source :

APPLIED MATHEMATICS AND COMPUTATION

ISSN: 0096-3003

Year: 2009

Issue: 2

Volume: 212

Page: 435-445

1 . 1 2 4

JCR@2009

3 . 5 0 0

JCR@2023

ESI Discipline: MATHEMATICS;

JCR Journal Grade:2

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 253

ESI Highly Cited Papers on the List: 16 Unfold All

  • 2020-3
  • 2020-1
  • 2019-9
  • 2019-5
  • 2019-3
  • 2019-1
  • 2018-11
  • 2018-9
  • 2018-3
  • 2018-1
  • 2017-11
  • 2017-9
  • 2017-7
  • 2017-5
  • 2017-3
  • 2017-1

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:891/10937532
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1