Indexed by:
Abstract:
Carbon/silica nanocomposite films with a hexagonal P6mm structure were fabricated directly by the oxidation and carbonization of surfactant/silica nanocomposite films, which were obtained by a dip-coating technique through a combination of sol-gel and evaporation-induced self-assembly. The as-synthesized nanocomposite films were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and N-2 adsorption-desorption. These analyses reveal that the carbon/silica nanocomposite films, with a narrow pore size distribution of mesopores, have an ordered symmetric structure. The pore sizes of this hybrid film can be controlled within a certain range by changing the carbonization temperature. In addition, the films are composed of a continuous silica matrix and a continuous carbon coating in about 1 nm adhered well to the silica matrix. The formation of carbon coatings from surfactant acts as a framework support to prevent the pore size of the silica matrix from shrinking.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING
ISSN: 1542-6580
Year: 2008
Volume: 6
0 . 5 3 1
JCR@2008
1 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: