Indexed by:
Abstract:
Efficient co-catalysts are crucial for photocatalytic water oxidation towards conversion of solar energy into chemical energy. Herein, we develop a sustainable and effective water oxidation system using graphitic carbon nitride (g-C3N4) and cubic cobalt manganese spinel (c-CoMn2O4) as light transducer and water oxidation co-catalyst, respectively. The surface modified g-C3N4 with c-CoMn2O4 not only accelerates the interface transfer rate of charge carriers but also reduces the excessive energy barrier for O–O formation, leading to an enhanced photocatalytic activity of water oxidation. Benefiting from the well surface engineering of g-C3N4, the g-C3N4-CoMn2O4 (CN-CM) composites exhibit an enhanced performance of photocatalytic water oxidation. The oxygen evolution rate (OER) of CN-CM is 4 times higher than that of pristine g-C3N4. It is a highly active in oxidation of water, with an apparent quantum yield (AQY) of ca. 1% at 380 nm with AgNO3 as sacrificial agent. This improvement is mainly due to the mixed-valence Co and Mn cations contained in c-CoMn2O4 spinel. © 2017
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis B: Environmental
ISSN: 0926-3373
Year: 2018
Volume: 224
Page: 886-894
1 4 . 2 2 9
JCR@2018
2 0 . 3 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 80
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: