Indexed by:
Abstract:
In this paper, we propose a new approach to predict users’ interest eigenvalues based on multi-Markov chain model, which provides a better personalized service for the users timely. We first collect a dataset from Sina Weibo that includes 4613 users and more than 16 million messages; Then, preprocess data set to obtain users’ interest eigenvalues. After that, divide users into several categories and establish multi-Markov chain to predict users’ interest eigenvalues. Our experiments show that using multi-Markov model to predict users’ interest eigenvalues is feasible and efficient, and could predicting both long-term and short-term user interests based on a suitable selection of the initial state distribution, λ. © Springer International Publishing Switzerland 2015.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2015
Volume: 9426
Page: 376-384
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: