Indexed by:
Abstract:
本文针对现有商品评论情感分析模型均没有对商品评论文本进行细粒度划分的缺点,提出一种基于双向门控循环网络(Bi-GRU)和双层注意力机制的商品评论情感分类模型.该模型将商品评论文本划分成词级和句子级,通过Bi-GRU提取商品评论在词级和句子级的特征,同时在词级和句子级分别应用注意力机制对相应信息进行权重重分布,通过层级递进的方式获取到商品评论的情感倾向.实验结果表明,本研究提出的商品评论情感分析模型在评论数据集中取得了93.78%的准确率,相对于使用单层注意力机制的Bi-GRU提升了2.6%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
广播电视网络
ISSN: 2096-806X
CN: 10-1686/TN
Year: 2020
Issue: 2
Volume: 27
Page: 102-107
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: