Indexed by:
Abstract:
支持向量机是机器学习中一种非常重要的分类方法,它在文本分类、语音识别、图像分析、信息安全等诸多领域均有重要的应用.提出了基于支持向量机对偶问题的一种非精确增广拉格朗日算法,讨论了所提算法的收敛性结果,并利用支持向量机模型的稀疏特性,结合矩阵不完全Cholesky分解以及Sherman-Morrison-Woodbury公式等程序实现技巧,极大地减少了所提算法的时间与空间复杂度.数值结果验证了提出算法的可行性和高效性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
辽宁师范大学学报(自然科学版)
ISSN: 1000-1735
CN: 21-1192/N
Year: 2019
Issue: 1
Volume: 42
Page: 5-15
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: