Indexed by:
Abstract:
隐层节点数是影响极端学习机( ELM)泛化性能的关键参数,针对传统的ELM隐层节点数确定算法中优化过程复杂、容易过学习或陷入局部最优的问题,提出结构风险最小化-极端学习机( SRM-ELM)算法。通过分析VC维与隐层节点数量之间的关联,对VC信任函数进行近似改进,使其为凹函数,并结合经验风险重构近似的SRM。在此基础上,将粒子群优化的位置值直接作为ELM的隐层节点数,利用粒子群算法最小化结构风险函数获得极端学习机的隐层节点数,作为最优节点数。使用6组UCI数据和胶囊缺陷数据进行仿真验证,结果表明,该算法能获得极端学习机的最优节点数,并具有更好的泛化能力。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机工程
ISSN: 1000-3428
CN: 31-1289/TP
Year: 2014
Issue: 9
Page: 215-219,224
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: