Indexed by:
Abstract:
提出有效处理百万个VLSI标准单元布局问题的混合遗传模拟退火算法。首先采用小规模种群、动态更新种群和交叉局部化策略,并协调全局与局部搜索,使遗传算法可处理超大规模标准单元布局问题。然后为进一步提高算法进化效率和布局结果质量,将爬山和模拟退火方法引入遗传算法框架及其算子内部流程,设计高效的线网-循环交叉算子和局部搜索算法。标准单元阵列布局侧重使用爬山法,非阵列布局侧重使用模拟退火方法。 Peko suite3、Peko suite4和ISPD04标准测试电路的实验结果表明,该算法可在合理运行时间内有效提高布局结果质量。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2014
Issue: 9
Page: 815-825
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: