Indexed by:
Abstract:
针对传统的K-Means算法的不足,以及其在文本聚类中存在的局限性,提出了一种基于网页向量语义相似度的改进K-Means算法.新算法通过向量语义相似度的计算自动确定初始聚类中心,在聚类过程中,达到语义相似度阈值的网页才使用K-Means算法进行聚类.通过实验证明,新算法很好地克服了传统K-Means算法随机选取聚类中心以及无法处理语义信息的问题,提高了聚类的质量.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
情报科学
ISSN: 1007-7634
CN: 22-1264/G2
Year: 2013
Issue: 2
Volume: 31
Page: 34-37,44
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: