Indexed by:
Abstract:
传统的串行聚类算法在对海量数据进行聚类时性能往往不尽如人意,为了适应海量数据聚类分析的性能要求,针对传统聚类算法的不足,提出一种基于消息传递接口(MPI)集群的并行PSO混合K均值聚类算法.首先将改进的粒子群与K均值结合,提高该算法的全局搜索能力,然后利用该算法提出一种新的并行聚类策略,并将该算法与K均值聚类算法、粒子群优化(PSO)聚类算法进行比较.实验结果表明,该算法不仅具有较好的全局收敛性,而且具有较高的加速比.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2011
Issue: 2
Volume: 31
Page: 428-431,437
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: