Indexed by:
Abstract:
本文提出一种以时空Logistic回归模型来预测城市扩展的新方法。其首先在传统Logistic回归模型中加入空间自相关结构构建空间Logistic回归模型,然后,利用漳州市区近20年(1989-2009年)的数据,建立不同时期城市扩展模拟的多个子空间Logistic回归模型M1,再采用一次平滑指数法综合处理这些时间序列的Mi,构建出顾及空间复杂性和时间序复杂性的时空Logistic回归预测模型。新方法一方面克服了传统Logistic回归模型法受限于预测年份影响因素数据难以获取的缺点,另一方面由于模型考虑了城市扩展的长时间序列复杂性,即综合了城市扩展不同时期影响因素不同的情况,使它更接近城市扩展的实际,因而预测精度会提高。以福建省漳州市区为例,分别运用传统Logistic回归模型方法,在传统Logistic回归模型中单独加入空间自相关结构的空间Logistic回归模型法和基于时空Logistic回归模型的新方法这3种方法,对2009年城市扩展进行了预测分析。结果表明,基于时空Logistic模型的新方法比传统Logistic回归模型法和空间Logistic回归模型法的预测精度都要好,总体预测精度分别为81.02%、83.82%和87.00%,预测城市用地的精度从63.59%提高到67.35%和73.34%,ROC曲线下的面积AUC从0.826提高到0.883和0.924。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
地球信息科学学报
ISSN: 1560-8999
CN: 11-5809/P
Year: 2011
Issue: 3
Volume: 13
Page: 374-382
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: