Indexed by:
Abstract:
三叶青是我国珍稀中药材,具有多种疗效,但不同产地的三叶青有效成分含量差异悬殊,为防止三叶青以次充好,其产地鉴别尤为重要。以浙江、云南、安徽、广西和湖北五个产地的三叶青为研究对象,利用傅里叶变换近红外光谱分析仪(Fourier transform near infrared spectroscopy,FT-NIR)收集4 000~10 000 cm-1范围内的近红外光谱,由于三叶青近红外光谱数据还未完善,因此在其产地鉴别上,应对鉴别算法提出更高的要求,即在实现三叶产地鉴别的同时,还要能够有效地识别出其他或未知新产地的三叶青。针对这一问题,本文结合三叶青近红外光谱数据的特点,对算法共做了三方面改进:①从距离的角度估计样本的概率密度;②以训练样本可信度的方式计算带宽参数;③在未知新产地的识别上,提出一种基于训练集样本的概率密度函数的识别方法。结果表明,该算法对训练集样本的识别精度达到了100%,且在140组预测集样本中,只有3组样本识别出错,并能够100%地识别出未知新产地的三叶青,说明基于核密度估计的改进算法在三叶青产地鉴别上,不仅鉴别精度高,且能够有效识别出其他或未知新产地的三叶青。
Keyword:
Reprint 's Address:
Email:
Source :
光谱学与光谱分析
ISSN: 1000-0593
Year: 2018
Issue: 3
Volume: 38
Page: 794-799
0 . 4 3 4
JCR@2018
0 . 7 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 2
Affiliated Colleges: