Indexed by:
Abstract:
The unavailability of a suitable draw solute constrains the advancement of forward osmosis (FO) technology. Here from a custom-built ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]), a multi nuclear zinc complex of [Zn-4(bet)(10)(H2O)(2)][Tf2N](8) (Zn-Bet-Tf2N) has been synthesized via a one-pot complexation reaction for electroplating wastewater treatment via FO processes. Possessing a large number of hydrophilic groups and an expanded structure, Zn-Bet-Tf2N generates a sufficient osmotic pressure to drive the FO process and minimizes reverse solute diffusion. Zn-Bet-Tf2N produces a water flux of 15.0 LMH even at a dilute concentration (0.2 mol/L) with negligible solute leakage during the FO process. The water permeation rates induced by Zn-Bet-Tf2N increase by up to 50% compared to those of the conventional NaCl, MgCl2 and NH4HCO3 draw solutes in zinc-containing wastewater reclamation. Zn-Bet-Tf2N is readily separated from water after FO through solvent extraction. With no energy input or by-products, the recycling of Zn-Bet-Tf2N is more practical than that of other draw solutes ever reported. Reproducible results are obtained when the recycled Zn-Bet-Tf2N is reused to FO processes. These findings suggest that the Zn-Bet-Tf2N facilitated FO system can achieve high water recovery efficiency, high selectivity and sustainability in zinc-containing wastewater treatment.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2021
Volume: 404
1 6 . 7 4 4
JCR@2021
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: